

Installation and Operating Manual

Emission Control Valve, ECV5

Preface

This manual provides instruction and maintenance information for the ECV5 Emission Control Valve.

It is highly recommended that the user read this manual in its entirety before commencing operations. It is the policy of Continental Controls Corporation that it is neither our intention nor our obligation, to instruct others on how to design or implement engine control systems. Continental Controls Corporation will not assume responsibility for engine controls not designed or installed by our authorized representatives.

This manual is intended to help the end user install and operate the ECV5 Emission Control Valve in the manner in which they were intended and, in a way, to minimize risk of injury to personnel or damage to engine or equipment.

Do **NOT** attempt to operate, maintain, or repair the Emission Control valve until the contents of this document have been read and are thoroughly understood.

Every attempt has been made to provide sufficient information in this manual for the proper operation and maintenance of the ECV5 Emission Control Valve.

All information contained within shall be considered proprietary information and its release to unauthorized personnel is strictly prohibited.

If additional information is required, please contact:

Continental Controls Corporation San Diego, CA, USA +1(858) 453-9880

Website: www.ContinentalControls.com

Email: Info@ContinentalControls.com

Regulatory Compliance

These listings are limited only to those units bearing the CSA identification

CSA:

- CSA Certified for Class I, Division 2, Groups A, B, C, and D, T3 at 85°C Ambient for use in Canada and the United States
- Certificate 1975931
- Type 3R Enclosure Rainproof

This product is certified as a component for use in other equipment. The final combination is subject to acceptance by the authority having jurisdiction or local inspection.

Wiring must be in accordance with North American Class I, Division 2 wiring methods, as applicable, and in accordance with the authority having jurisdiction.

Special Conditions for Safe Use:

Field wiring must be suitable for at least 85°C.

Do not remove covers or connect/disconnect electrical connectors unless power has been switched off or the area is known to be non-hazardous.

Substitution of components my impair suitability for Class I, Division 2, or Zone 2.

Do not clean equipment unless the area is known to be non-hazardous.

NOTICE

Do not connect any cable grounds or "instrument ground," "control ground," or any non-earth ground system.

Safety

It is necessary to always use extreme caution when working with any fuel system Continental Controls Fuel Control Valves are normally used with natural gas Natural gas and air, when combined, become very combustible. When contained within an enclosure, such as a gas turbine engine or its exhaust system, the mixture can explode in a violent manner when ignited. Controls for gas engines should always be designed to provide redundant fuel shut downs. Towards this goal, the ECV5 plays an important part in the safety of the whole system.

The ECV5 is not a shutoff valve. The ECV5 is not the primary control to shut down the engine. Shutoff valves should be used in addition to the Emission Control Valve. The fuel system should be designed in such a way that:

No single failure of a component will cause the fuel system to admit fuel to the engine when the engine has been shut down.

No single failure can result in grossly over-fueling the engine when attempting to start.

No fuel is trapped downstream of the ECV5 or potentially leaked into the engine fuel manifold. It is strongly recommended that the engine should be purged of any potential gas in the fuel manifold prior to turning on the ignition system. Additionally, the Ignition Permissive should be used to ensure that the ignition system is on and operating prior to the ECV5 allowing gas to the engine.

Failure to follow the above rules may lead to possibly serious_damage to equipment and/or injury to personnel.

Electrostatic Discharge Awareness

Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts.

Discharge body static before handling the control unit.

Avoid all plastic, vinyl, and Styrofoam around printed circuit boards.

Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.

Follow these precautions when working with or near the control unit:

- Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics do.
- Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB for the control cabinet, follow these precautions:
 - Do not touch any part of the PCB except by the edges.
 - Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
 - When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.

Glossary of Terms

Term	Definition	
Air/Fuel ratio (AFR)	The ratio of mass air rate to mass fuel rate	
СО	Carbon Monoxide	
CO ₂	Carbon Dioxide	
EGR	Engine Gas Regulator or Electronic Gas Regulator	
EGT	Engine Gas Temperature	
Excess Oxygen	> 10% O ₂	
	Stoichiometric air/fuel ratio Lambda = 1.0	
Lambda	lean (fuel limited) being > 1.0	
	rich (O ₂ limited) being < 1.0	
Lean Combustion	> 4% O ₂	
LVDT	Linear Variable Differential Transformer	
NOx	Oxides of Nitrogen (NO and NO ₂)	
NSCR	Non-Selective Catalytic Reduction (see Three-Way Catalyst)	
Rich Combustion	< 1% O ₂	
SCR	Selective Catalytic Reduction	
Sensor: O ₂ – Lamda	An exhaust sensing device. Outputs a low signal when lean of lambda and a	
Selisor. O_2 – Lamua	high signal when rich of lambda.	
Sensor: O ₂ – Wide	An exhaust sensing device. Outputs a high signal when lean of lambda and	
band	a low signal when rich of lambda.	
Stoichiometric	Theoretical air/fuel ratio where all fuel and oxygen are completely	
Stolemometric	consumed leaving no O ₂ in the exhaust. Equals Lambda 1.0.	
Supply Pressure	The fuel gas supply pressure immediately upstream of the ECV5	
THCs	Total Hydrocarbons	
Three-Way Catalyst	A device containing both reduction and oxidation materials to convert NO _x ,	
Thee-way Catalyst	CO, and THC emissions to C, N, CO ₂ , O ₂ , and H ₂ O	
UHCs	Unburned Hydrocarbons	
VOC	Volatile Organic Compound	

TableofContents

Preface		. 1	
Regulatory Compliance2			
Safety		. 3	
Electro	ostatic Discharge Awareness	.4	
Glossa	ry of Terms	. 5	
ECV5 S	Specifications	. 8	
Introd	uction	.9	
	Rich-Burn Combustion	10	
	Lean-Burn Combustion	11	
	Achieving Emission Compliance	12	
ECV5 f	or Rich or Lean-Burn Configurations	14	
	Production of Emissions	14	
	Exhaust Gas Treatment	15	
ECV5 G	General Information	17	
	Specifications	17	
	Environment	18	
Featur	es	20	
	Range	20	
	Closed Loop Pressure Control	20	
	Fully Automatic Control	21	
	Variable Dynamic Gain	21	
	Communications	21	
1.	Theory of Operation	22	
	The System	22	
	Full Fuel-Authority	23	
	Pressure Sensor	23	
	Mechanical Valve Design	24	
	Catalyst (Cat) Monitor	24	
	Wide-Range Oxygen Sensor	25	
	ECVI	26	
	NOx Sensor	26	
	Thermocouples	27	
	4-20ma input for a Delta-P transducer	27	
ECV5 I	nstallation Instructions	28	
ECVI M	Nonitor Screens	29	
	Initial Display Screen	29	
Main Screen			
	Pressure/Position Measurement Screen	30	
	Flow Meter	32	

Diagnostics Screen		
Settings Screen		
ECVI Settings Screens		
Initial Display Screen		
Main Screen		
Settings Screen		
CANbus Setup Screen		
Free Air Cal Screen		
Fuel Pressure Setup Screen		
O ₂ Sensor Setup Screen		
O2 Dithering Setup Screen		
Dynamic O ₂ Schedule Setup Screen		
Optional Start Pressure Settings Screen		
Cat Monitor Setup Screen		
Modbus Address Setup Screen		
Procedure for Entering Parameters on Setup Screens		
ECVI Setup Procedures		
Setup of the ECV5 with Cat Monitor Using the ECVI with Ic	dec Display 45	
Optional Equipment	53	
Cables	53	
Turbo Balance Line	53	
2. Troubleshooting	53	
Valve Stroke Limited	53	
Pressure Control Loop	53	
Governor Control	53	
O ₂ Sensor		
Product Warranty		
Technical Assistance		
Appendices		
A1. ECV5_B Modbus Registers		
A2. CANbus Communications		
A3. Cat Monitor Modbus Registers	65	
A4. Envelope, ECV5, 2.0 in. ANSI Flange	75	
A5. Envelope, ECVI		
A6. ECV5 Cable	77	
A7. Catalyst Monitor, Pages 1 – 2		
A8. ECVI PWB Wiring Diagram, Dual Bank		
A9. ECVI PWB Wiring Diagram, Single Bank		
A10. O ₂ Sensor Cable Wiring Diagram		

ECV5 Specifications

Flow Capacity:	400 scfm (1120 lbs/hr) Natural Gas at 25 psig Gas Supply (supply pressure & fuel composition dependent)
Fuel	Natural Gas, Propane Gas, Other Gaseous Hydrocarbons
Maximum Operation Pressure:	150 psig
Cv:	15
Minimum Filtration Requirement:	50 Micron Absolute
Operating Temperature:	-40° C (-40° F) to +90° C (+194° F)
Response Time:	Less than 50 milliseconds 10% - 90% Stroke
Demand Signal [to Control Valve]:	 **0-5 volt (Pressure Command or Oxygen Sensor FDBK), **4-20 mA (Pressure Command or Position Command or Oxygen Sensor Bias), CAN Bus
Feedback Signal [from Control Valve]:	**4-20 mA (Pressure Feedback or Position Feedback), CAN Bus
Power Input:	18-30VDC, 5 Amp Max
Electrical Interface:	MS Connector (D3899/20FE99PN)
Communication Interface:	RS232 Modbus RTU, CANBus J1939
Valve Materials:	-Body: 6061-T6 Anodized Aluminum -Wetted Components: 300 Series Stainless Steel, 6061-T6 Anodized Aluminum, - Seals: Nitrile, Viton
Flanges:	2" Class 150 Flange, 4-Bolt
Dimensions:	6.0"L x 12.3"H x 6.0"W
Approximate Weight:	13 pounds
Certifications:	د د us Class I, Division 2, Group D: T4
Patent No.	US 6,978,774 B2

Introduction

Before exhaust emissions were a concern, natural gas engines used mainly by the natural gas industry, were designed to run with excess air. Air/Fuel ratio controllers were mechanical devices that were not very accurate and sometimes not even used. These engines ran very well with 5% to 20% excess air. The air/fuel ratio would often vary with load and as long as the engines would carry the load and didn't detonate or misfire, people were happy.

When exhaust emissions became important, it was discovered that these engines were running with very high NOx levels, sometimes at the peak of the NOx curve. Two strategies evolved to reduce the NOx while containing the CO and unburned hydrocarbons: Stoichiometric or Rich-Burn combustion and Lean-Burn Combustion.

The graph below is representative of the Cylinder Pressure on the vertical (Y-axis) and the ratio of actual air-fuel ratio divided by the Stoichiometric air-fuel ratio on the horizontal (X-axis). The graph is not to scale and does not represent any particular engine.

Typical Emission Curve without Exhaust Treatment

The Excess Air Ratio on the X-axis is referred to as Lambda. Stoichiometric air-fuel ratio is 1.0 in the figure above. Rich-burn operation is to the left of the Stoichiometric point and Lean-burn operation is any ratio to the right of the Stoichiometric point. As seen in the graph above, the Excess Air Ratio, Lambda, needs to be much higher than 1.0, to reduce the NOx significantly. Operation in the detonation or knock region

ECV5 Installation and Operating Manual, 50500000, Rev F

and the incomplete combustion region must be avoided. In the graph, it can be seen that the engine can be operated at a higher load or BMEP, without detonating, when operating with a large amount of excess air. The higher BMEP means, more horsepower is available and the engine will be a little more efficient because of the higher cylinder pressure.

Rich-Burn Combustion

The first method, and easiest to implement, is to operate the engines at a Stoichiometric fuel mixture. This is also referred to as "rich-burn" operation. A Stoichiometric mixture is the chemically correct fuel mixture for combustion, with near zero oxygen left over in the exhaust. This method of operation is suitable for a three-way catalytic converter. The mixture must be precisely controlled in order for the reaction in a catalytic converter to oxidize the CO to CO_2 and reduce the NO and NO_2 to N_2 and O_2 and not have undesirable products left over.

Block Diagram of EVC5 and Cat Monitor in Rich Burn Combustion Configuration

Rich-Burn Oxygen Sensor

To achieve the precision in the control of the mixture required for the catalyst, an oxygen (O_2) sensor is placed in the exhaust before the catalytic converter. The output of the O_2 sensor is fed back to the control device to close the loop on the amount of oxygen in the exhaust. The mixture is controlled to maintain very small oxygen content, less than 0.02% in the exhaust, as indicated by the voltage produced by the O_2 sensor. This indicates that the combustion process is consuming nearly all of the oxygen. If a higher oxygen content is indicated, the engine is running too lean and a lower oxygen content indicates the mixture is too rich.

Benefits of Rich-Burn

One of the benefits of engines running in a Rich-Burn mode with a catalytic converter is they operate with very small quantities of NOx and CO in the exhaust. At the discharge of the catalytic converter, NOx in the range of a few parts per million is achievable.

Lean-Burn Combustion

The second strategy for reducing emissions is to run the engine with as much excess air as possible. Any air/fuel reaction requires an energy source to initiate combustion. In natural gas engines, the spark plug performs this function. In the lean-burn engines, the combustion process is enhanced by pre-mixing the air and fuel upstream of the turbocharger before introduction into the cylinder. This creates a more concentrated mixture in the combustion chamber and reduces the occurrence of "knocking" or detonation. To prevent either knocking or misfiring, the combustion process must be controlled within a narrow operating window. Input air temperatures and volume, together with air to fuel ratio and compression ratio, are constantly monitored. The microprocessor-based engine controller regulates the fuel flow, air/gas mixture and ignition timing. Lean-Burn engines are designed to operate at a lean air/gas ratio of Lambda = 1.7 (Traditional Stoichiometric natural gas engines have an air/gas ratio of Lambda = 1.0). In the preceding graph that plots Break Mean Effective Pressure (BMEP) against Air Excess (Lambda), (see *page 1* in this section), the operating window is a very narrow band where efficiency peaks and where NOx is near its minimum. A richer mixture (Stoichiometric) can potentially produce knocking and higher NOx emissions. A leaner mixture than Lambda 1.7 may not combust reliably and could cause misfiring, which raises hydrocarbon (HC) emissions.

Full-authority electronic engines, sensors, and microprocessors in the new lean-burn engines are critical for maintaining combustion within these boundaries. The design of the lean-burn engine incorporates a simple open combustion chamber housed in the piston crown. The shape of the piston crown introduces turbulence in the incoming air/fuel mixture that promotes more complete combustion by thoroughly exposing it to the advancing flame front. The flame plate of the cylinder head is regular (flat) and the spark plug is centrally located. The air and gas are mixed using a governor-controlled gas nozzle operating in a Venturi. If a power cylinder has more air compressed into it, the specific heat of the air charge in the cylinder is higher, which means, it can absorb the same quantity of heat with less temperature rise. The reduction in temperature causes a reduction in the oxidation of the nitrogen. Engines running with large amounts of excess air can achieve levels of NOx below 2 Grams / HP*HR without a catalytic converter. A selective catalytic converter can be used to reduce the NOx level further but has the disadvantage of requiring the injection of urea or ammonia.

Air/fuel ratio in lean burn engines can be as high as 22:1. When full power is needed, such as during acceleration or hill climbing, a lean burn engine reverts to a Stoichiometric (14.7:1) ratio or richer.

Lean-Burn Oxygen Sensor

The Wide Range Oxygen Sensor Interface used for Lean Burn engines and Rich Burn engines indicate a very wide range of oxygen in the exhaust and are often referred to as Lambda sensors. Lambda is the air-fuel ratio that the engine is running, divided by the Stoichiometric air-fuel ratio, as shown in the preceding graph.

Benefits of Lean-Burn

Engines running in the Lean-Burn mode, offer several important advantages:

- lowered combustion temperatures
- reduced emissions
- fuel flexibility

One of the results of this technology is significantly reduced emission in the exhaust. Lean-burn gas engine generators can have NOx emissions as low as .85 grams/BHP-hr and produce low amounts of hydrocarbons (HC), carbon monoxide (CO) and particulate matter (PM) allowing the generator sets to meet the most stringent air quality regulations without after treatment devices in the exhaust stream. For even lower emissions, lean-burn gas engine generator sets are also available with factory-integrated after treatment options such as Selective Catalytic Reduction (SCR) and Oxidation Catalysts, resulting in NOx levels at or below 0.85 grams/BHP-hr. With these after treatment options, the gas engine generators have been shown to meet the most stringent prime power emissions regulations anywhere in the world.

Another advantage of the lean-burn technology with full-authority electronic engine controls is the ability to operate on gas with a wide range of quality. The Methane Number (MN) measurement is used to determine fuel gas suitability as an engine fuel. Most natural gas has an MN from 70 to 97 pipeline quality gas typically has an MN of about 75. Resource recovery gas from landfills or sewage treatment facilities is typically of lower quality, but is often suitable for use in lean-burn engines. Some lean-burn gas engine generators will operate on gas with an MN of 50 or greater, providing excellent fuel flexibility. However, gas with a MN below 70 may require de-rating of the generator output.

Lean-burn gas engine generator sets are setting a new standard for fuel efficiency, high power output for their size, and for low emissions. In regions with supplies of natural gas, these generator sets are providing highly reliable electric power for utility peaking, distributed generation, prime power and for combined heat and power systems.

Achieving Emission Compliance

Emission performance necessitates that a number of systems and components operate together consistently and flawlessly over a long period of time. This requirement translates into the following:

- superior air/fuel ratio controller set to optimize catalyst performance and capable of maintaining the air-fuel ratio within a favorable lambda range regardless of changes in fuel composition, changes in ambient conditions, and changes in engine operating load
- Wide-band oxygen sensors narrow-band sensors do not have this capability
- NOx sensor connected in a feedback control loop to trim the AFR controller as it seeks lowest NOx emissions
- advanced fuel control valves with very fast, very precise control capabilities
- well maintained engine ignition timing that does not deviate too advanced or retarded, both of which effect engine emissions

- high quality NSCR catalyst with high surface area, high catalytic activity, and long service life
- catalyst designed with low gas hourly space velocity, i.e., high catalyst volume
- catalyst housing with superior seals to eliminate exhaust gas bypass around the catalyst

Under these conditions and in a "clean" exhaust environment, a good quality properly sized NSCR catalyst should achieve high performance over an extended period of time. However, even with tight lambda control, low-load operating conditions are likely to reduce the engine exhaust gas temperature and possibly reduce the performance efficiency of the NSCR catalyst.

A stringent performance specification allows the tiniest loss of performance over thousands of hours of operation. A catalyst loses performance because external factors degrade the performance over time of even the most exceptionally designed catalyst:

- contaminants like ash and sulfur mask and plug the surface and the pores of the catalyst
- chemical contaminants react with and poison the precious metal active ingredients, or engine malfunction causes excessive temperatures in the catalyst as fuel combusts across the catalyst resulting in catalyst sintering

Therefore, long-term, high catalyst performance also imposes the following system requirements:

- very low-ash engine lube oil to completely eliminate the deposition of ash on the catalyst surface
- absence of any chemicals that poison the catalyst coming from the fuel, the combustion air, the lube oil, the antifreeze, poor in-cylinder combustion, and any/all other sources.
- absence of ignition system problems that result in unburned fuel reaching the catalyst and causing an over-temperature condition

From a system standpoint long-term emission performance requires monitoring and maintenance of:

- the engine, its ignition system, its lube oil system, its coolant system, etc.
- fuel pressure control, fuel flow control, fuel flow measurement
- the air-fuel ratio controller, the wide band oxygen sensors, the NOx sensor, the temperature sensors
- measurement and documentation of emission performance for the new system to establish benchmark performance

From a catalyst standpoint:

- Chemical washing may be required periodically to remove contaminants to maintain performance during the warranty period. A well-designed catalyst should respond well to chemical washing but cannot reverse the effects of thermal sintering or certain contaminants that irreversibly poison the precious metals.
- It may be prudent to have a spare set of catalyst onsite to minimize downtime when chemical cleaning is required.

In summary, emission performance requires a system-approach that includes equipment, operating conditions and routine maintenance that extend far beyond the scope of the catalyst.

ECV5 for Rich or Lean-Burn Configurations

The ECV5 is the heart of the Continental Controls AFR system. The logic and electronic circuitry for closed loop control of an engine AFR is within the ECV5. The Cat Monitor is the interface between the O_2 sensors and NO_x sensors to the ECV5. The ECVI (I for interface) provides a junction point for all interconnections between the different devices and a graphical user interface. No control logic or settings are saved in the display.

The AFR can be used for rich burn or lean burn engines simply by picking a different O_2 sensor input. The O_2 sensor inputs from the Cat Monitor are 0 to 5 VDC with the higher the voltage, the more oxygen in the exhaust. This is opposite of narrow band sensors commonly used. Stoichiometric or (Lambda 1.0) will be near 1.0 VDC. 20.8 percent O_2 is 5.0 VDC. So a lean setpoint will be from 2.25 VDC to 3.0 VDC. By using this signal, the ECV5 can sense if the engine is running too rich or too lean. If the O_2 sensor voltage is higher than the O_2 setpoint, the engine is running too lean. The ECV5 will respond by increasing the internal pressure setpoint. Likewise, if the voltage is lower, the engine is too rich, and the pressure setpoint will be decreased. The pressure setpoint always starts at the default pressure. The default pressure is the pressure the valve maintains for starting the engine, or if the O_2 sensor fails. There are programmable high and low limits. For safety, these limits should be set to the normal operating range of that particular engine.

The NOx sensor can be used either on a rich burn engine or lean burn. The NO_x sensor on a rich burn engine is installed in the exhaust after the catalyst. In a lean burn engine, there is no catalyst therefore, the NOx sensor would be installed directly in the exhaust. The NOx sensor is connected to the Cat Monitor via the CANbus. The Cat Monitor will trim the O_2 sensor setpoint leaner or richer to reach the desired NOx level, or tune the AFR to the optimal setting for best performance from the catalyst.

Production of Emissions

Operation of any fuel-fired power generating equipment results in emissions of exhaust gases. Principal among these are carbon dioxide (CO_2), water vapor (H_2O), oxides of nitrogen (NO and NO2, generally referred to as NOx), oxides of sulfur (SOx), carbon monoxide (CO), unburned hydrocarbons (UHC), and particulates. The environmental permitting requirements for onsite generation impose restrictions on emissions of NOx, SOx, CO, and particulates because of their contributions to smog and acid rain. Regions of the U.S. with significant air quality problems are classified as "Non-Attainment Zones" and severe limits are placed on annual emissions of these pollutants in those areas. As a consequence, requirements for pollution abatement equipment are more stringent in these areas.

The rates of emissions depend on the quantities of fuel consumed, the type of fuel used, and the temperature of combustion. "Thermal" NOx emissions are a consequence of the high combustion temperatures; the higher the temperature level the greater the formation rate for NOx. This is true no matter what fuel is used. "Fuel based" NOx emissions are negligible in systems using natural gas, but they can be a significant source of pollution when fuel oil is used. SOx formation is a consequence of sulfur contained in the fuel and is insignificant for natural gas but must be considered when fuel oil or other fuels are used. Generally, technologies for reducing NOx and SOx emissions increase emissions of CO and UHCs.

As a fuel is burned in an engine, various exhaust emissions are produced:

- Hydrocarbons (HC's) from unburned fuel are formed from a rich fuel mixture (or a lean fuel mixture where there is excess air, leading to a lean misfire.
- Carbon Monoxide (CO) from a rich fuel mixture, and never from a lean fuel mixture.
- Carbon Dioxide (CO₂) formed during any combustion process when oxygen and carbon are present in the primary combustion ingredients.
- Oxygen (O₂) from a lean fuel mixture.
- Oxides of Nitrogen (Nitrogen Oxide) NOx. Nitrogen is present in the air we breathe, and the engines air it consumes. Nitrogen displaces the air by approximately 75%. Nitrogen doesn't burn, but it can oxidize at temperatures over 2,500°F. NOx is a health hazard and one of the EPA's primary emission problems.

One method of controlling NOx is to reduce combustion temperatures. An EGR value is the easiest device to use. It bleeds a small amount of inert exhaust gas into the incoming air stream, diluting the oxygen, and reducing combustion temperatures.

Another method of NOx reduction is to run a richer fuel mixture. By adding more fuel, the amount of air is displaced, reducing NOx. The exhaust catalyst, converting the CO and HC into CO₂, handles the left over fuel. With a liquid fuel engine, the addition of more fuel also lowers the combustion temperature by the condensing effect. Here the fuel is evaporating and absorbing combustion heat. With a vapor fuel, the reverse is true. If the engine is running lean (over λ =1.2), the exhaust actually begins to cool down, thus reducing exhaust and combustion temperatures.

Exhaust Gas Treatment

Generally, there are trade-offs between low NOx emissions and high efficiency for any engine. There are also trade-offs between low NOx emissions and emissions of the products of incomplete combustion (CO and unburned hydrocarbons). There are three main approaches to these trade-offs that come into play depending on regulations and economics. One approach is to control for lowest NOx accepting a fuel efficiency penalty and possibly higher CO and hydrocarbon emissions. A second option is finding an optimal balance between emissions and efficiency. A third option is to design for highest efficiency and use post-combustion exhaust treatment.

There are several types of catalytic exhaust gas treatment processes that are applicable to various types of reciprocating engines - three-way catalyst, selective catalytic reduction, oxidation catalysts, and lean NOx catalysts.

The catalytic three-way conversion process (TWC) is the basic automotive catalytic converter process that reduces concentrations of all three major criteria pollutants - NOx, CO and VOCs. The TWC is also called non-selective catalytic reduction (NSCR). NOx and CO reductions are generally greater than 90%, and VOCs are reduced approximately 80% in a properly controlled TWC system. Because the conversions of NOx to N₂ and CO and hydrocarbons to CO₂ and H₂O will not take place in an atmosphere with excess oxygen (exhaust gas must contain less than 0.5% O₂), TWCs are only effective with Stoichiometric or rich-burning engines. Typical "engine out" NOx emission rates for a rich burn engine

are 10 to 15 gm/bhp-hr. NOx emissions with TWC control are as low as 0.15 gm/bhp-hr. The ECV5 used in conjunction with a NOx sensor guarantees the best possible emissions. It is not uncommon to be able to control below 1ppm of NOx over a period of months using a NOx sensor with Continental Controls' patented emission minimization algorithm.

Stoichiometric and rich burn engines generally have lower efficiencies than lean burn engines. The TWC system also increases maintenance costs by as much as 25%. TWCs are based on noble metal catalysts that are vulnerable to poisoning and masking, limiting their use to engines operated with clean fuels - e.g., natural gas and unleaded gasoline. Also, the engines must use lubricants that generate catalyst-poisoning compounds and have low concentrations of heavy and base metal additives. Unburned fuel, unburned lube oil, and particulate matter can also foul the catalyst. TWC technology is not applicable to lean burn gas engines or diesels.

Lean burn engines equipped with selective catalytic reduction (SCR) technology selectively reduces NOx to N₂ in the presence of a reducing agent. NOx reductions of 80 to 90% are achievable with SCR. Higher reductions are possible with the use of more catalyst, more reducing agent, or both. The two agents used commercially are ammonia (NH₃ in anhydrous liquid form or aqueous solution) and aqueous urea. Urea decomposes in the hot exhaust gas and SCR reactor releasing ammonia. Approximately 0.9 to 1.0 moles of ammonia is required per mole of NOx at the SCR reactor inlet in order to achieve an 80 to 90% NOx reduction.

SCR systems add a significant cost to the installation and maintenance of an engine system and can severely impact the economic feasibility of smaller engine projects. SCR requires on-site storage of ammonia, a hazardous chemical. In addition, ammonia can "slip" through the process unreacted and contribute to environmental health concerns.

Oxidation catalysts generally are precious metal compounds that promote oxidation of CO and hydrocarbons to CO_2 and H_2O in the presence of excess O_2 . CO and NMHC conversion levels of 98 to 99% are achievable. Methane conversion may approach 60 to 70%. Oxidation catalysts are now widely used with all types of engines, including diesel engines. They are being used increasingly with lean burn gas engines to reduce their relatively high CO and hydrocarbon emissions.

Lean-NOx catalysts utilize a hydrocarbon reductant (usually the engine fuel) injected upstream of the catalyst to reduce NOx. While still under development, it appears that NOx reduction of 80% and both CO and NMHC emissions reductions of 60% may be possible. Long-term testing, however, has raised issues about sustained performance of the catalysts. Current lean-NOx catalysts are prone to poisoning by both lube oil and fuel sulfur. Both precious metal and base metal catalysts are highly intolerant of sulfur. Fuel use can be significant with this technology in that the high NOx output of diesel engines would require approximately 3% of the engine fuel consumption for the catalyst system.

Emissions with Catalyst in Rich Burn Combustion Configuration

ECV5 General Information

Specifications	
Electrical Input Characteristics	
Input Voltage Range	19 – 30 VDC Range; 24 VDC Nominal
Maximum Steady State Input Current	3A Nominal
Maximum Transient Input Current	5A Max
Mechanical Characteristics	
Valve Maximum Effective Area	.560 in ²
Valve Minimum Effective Area	0
Weight	17.3 lbs.
Mounting	ANSI Class 150 2" Pipe Flange (See envelope
	drawing)
Temperature	
Steady State Ambient Temp	-40° to +185°F
Storage Temp	-40° to +185°F
Fuel Gas Inlet Temp	-40° to +185°F

ECV5 Installation and Operating Manual, 50500000, Rev F

Fuel Connections	
Filter Requirements	Less than 50 μm
Dynamics	
Step Response Slew Time	< 100 ms for a 10 – 90% and 90 – 10% step
Overshoot	< 2% of step

Environment

EMC

EN61000-6-2 (2005) Immunity for Industrial Environments

EN61000-6-4 (2001) Emissions for Industrial Environments

Fuel Type

The ECV5 operates on gases ranging from pipeline quality natural gas to specialty gas (such as landfill, digester, or other biogases). The ECV5 also operates on gases ranging from pipeline quality natural gas to propane. Proper application of the valve for fuel flow, FGP, energy content, etc., is the responsibility of the OEM/packager/customer. The fuel gas flowing through the valve can consist of the following compounds with limits if they apply:

Component	Specification
Gaseous hydrocarbons	No limit
(methane, ethane, propane, etc.)	
СО	No limit
CO ₂	No limit
Hydrogen	< 10%
Oxygen	No limit
Nitrogen	No limit
Sulfur compounds including	< 500 mg/10 kWh
Hydrogen sulfide	(< 2000 mg/10 kWh)
Chlorine and fluorine compounds	< 100 mg/10 kWh
(typically chlorofluorocarbons)	(< 400 mg/10 kWh)
Silicon	< 5 mg/10 kWh
	(<20 mg/10 kWh)
Ammonia	< 50 mg/10 kWh
Oil or hydrocarbons in liquid	< 5 mg/10 kWh
(mist form)	
Fine particulates, including	< 3 mg/10 kWh
silicon	
(less than 1.0 μm)	

Overall, the gas Specific Gravity should be between 0.4 and 2.0 for the ECV5. The energy content should be between 1 and 9.5 kWh/nm³. The values in parenthesis () are allowed, but may result in reduced valve life. The above fuel limits can be converted to ppm by multiplying the given number by the LHV of the fuel in question, then dividing by 36. The LHV must be in units of MJ/kg.

Inlet Fuel Gas Pressure

The maximum inlet fuel gas pressure (FGP) for the ECV5 is 50 psig. Most applications will have a much lower FGP. If the FGP is too high, the required ECV5 stroke will be reduced and instability may result.

FGP Adjustment

With the engine running at max load and the target air fuel ratio, adjust the inlet FGP so that the ECV5 stroke is approximately 75%.

Fuel and Service Gas *NOTE*

OPERATORS ARE URGED TO CONSULT LOCAL LEGISLATIVE AUTHORITY FOR SULFUR LIMITATIONS ON FUELS. ANTIPOLLUTION LEGISLATION MAY REQUIRE A LOWER SULFUR CONTENT THAN SPECIFIED IN THE FUEL TABLE.

THE SELECTION OF A SATISFACTORY FUEL DEPENDS ON THE PHYSICAL AND CHEMICAL COMPOSITION OF THE FUEL. NATURAL GAS FUEL REQUIREMENTS ARE GIVEN IN THE FOLLOWING TABLE.

Cas Tamparatura	40° F to 10° F (40° C to 10° C)	
Gas Temperature	-40°F to +185°F (-40°C to +85°C)	
Lower Heating Value	700 to 2,500 Btu/scf. Lower heating values outside this range are	
	acceptable with approval of CCC Engineering.	
Composition	Gas composition shall be such that dew point at engine supply	
	pressure of 150 psig (10.5 kg/cm2) must be at least 10°F (6°C)	
	below gas fuel supply temperature. Dew point can be calculated	
	from the composition or determined experimentally with an	
	instrument such as the Alnor Dew Pointer, manufactured by	
	Alnor Instrument Company, Chicago, Illinois.	
Contaminants: Fuel Gas	Total contaminants shall not exceed:	
	30 ppm x (lower heating value by weight Btu/lb)/(19000 Btu/lb)	
	or 30 ppm x (kg-cal/kg)/(10534 kg-cal/kg)	
	Particles larger than 10 microns shall not exceed:	
	0.3 ppm x (lower heating value by weight Btu/lb)/(19000	
	Btu/kg) or 0.3 ppm x (kg-cal/kg)/(10534 kg-cal/kg)	
	No entrained water is allowed; i.e., no water in excess of	
	saturation of at 150 psig (10.5 kg/cm ²) pressure or maximum	
	operating pressure.	

Natural Gas Fuel Physical and Chemical Requirements

	Percent-by-weight total sulfur, including hydrogen sulfide, shall not exceed: 1% x (lower heating value by weight Btu/lb)/(19000 Btu/lb)	
Service Gas (If separate supply for pneumatic started and auxiliary	No more than 0.7 grams of solid contaminants per 1000 cu ft. (28.3 cu m) of gas are allowed; 99 percent of these solids shall be smaller than 10 microns.	
pump gas motors)	No entrained water is allowed; i.e., no water in excess saturation at maximum operating pressure. No more than 0.5 pound (0.23 kg) sulfur per 1000 cu ft. (28.3 cu m) of gas (including hydrogen sulfide) is allowed.	

Features

Range

The ECV5 is a true full-authority fuel valve, the range of the ECV5 is much greater than a system relying on a pressure regulator with a bypass valve or a restrictor stepper motor.

The range of the ECV5 will help tremendously when working with applications where any of the following may occur:

- Load Changes
- BTU Value of the fuel gas changes
- Ambient Air Temperature Changes

Bypass type systems are normally set up on the lean limit and they add fuel to control in the desired range. In the event that a large load is removed, the system cannot control beyond this lean limit. In the event that the BTU value of the gas declines, the unit sometimes cannot add enough fuel to keep up with the change. This control range on a bypass type system is normally a maximum of 10% to 15% change.

A restrictor valve type of system is normally set up to run rich and the restrictor valve pinches off fuel to control in the acceptable range. This system also lacks the range to keep up with large load changes or BTU swings.

Closed Loop Pressure Control

This control technique is really what separates the ECV5 from other controllers when it comes to reducing emissions. The ECV5 operates as a variable pressure controller where the O_2 sensor constantly readjusts the control pressure setpoint as required to meet emissions. This technique helps to stabilize the engine control by controlling the moving setpoint and reducing droop in the regulator. This integrated pressure control concept is patented and is unlike any other controller. By reducing or increasing the pressure gain settings in the ECV5, the valve will react as quickly or can be dampened as much as is required by the application.

Fully Automatic Control

The ECV5 is fully automatic. This means that no matter what the operational changes are in the engine, the ECV5 will keep up with the changes. There is no need to call an operator to reset a setpoint or adjust the controller. These changes are automatic.

Variable Dynamic Gain

The ECV5 automatically adjusts the amount of gain applied based on the stroke of the valve. This means that if the valve is barely being stroked, the gains are barely applied, and as the stroke increases, so do the gains. At maximum stroke, the gains are still appropriate for this amount of stroke. This unique control technique allows the ECV5 to control effectively at startup, light loads, or fully loaded.

Communications

The circuit board inside the ECVI serves as a junction point for all connections between the ECVI, the Cat Monitor, ECV5, and optionally, the FM50 Flow Meter. Communication from each device is of two different protocols: CANbus J1939 and Modbus RTU. (See available registers in appendix) Modbus gives the HMI (ECVI display) the ability to interface with each device, while CANbus is used for communication between the devices.

All CCC devices use the following RS232 communication settings:

RS232 Setting	Value
Baud rate	9600
Data bits	8
Stop bit	1
Parity	None
Flow Control	None
Default Modbus ID	1

The ECV5, Cat Monitor, and flow meters each have an RS232 serial port built into each device. The ECVI circuit board has multiple RS232 to RS485 converters that link all serial communications to a single RS485 bus for communication to the display. Each device on the RS485 Modbus network must have a unique Modbus address which should be set as follows:

Device	Modbus Address (ID)
ECV5 Left bank	1
ECV5 Right Bank	
(dual bank configuration	2
only)	
Catalyst Monitor	3
Flow Meter	25

There are two terminals on the circuit board that are connected to this RS485 Modbus. These terminals are for an optional user interface such as a SCADA system or PLC. However only one device may be the Modbus master. If another device is acting as the Modbus master, the HMI (ECVI display) may not be connected. Modbus TCP/IP is available through the Cat Monitor.

1. Theory of Operation

Continental Controls Corporation's ECVI is the user interface for our Air/Fuel ratio products, the ECV5 and the Catalyst Monitor. It serves as the central hub where all of the separate components of the system are connected. The individual components communicate with each other via CANbus while the user interface communicates to each device with a Modbus serial port.

The ECV5 is essentially an electronic pressure regulator. When the system receives an ignition confirm signal, the ECV5 will open and control the fuel pressure to the default pressure setting for startup. When running in default mode or startup, the ECV5 regulates fuel pressure to the venturi mixer just like a pressure regulator. If the O₂ sensor fails, the system will run in default mode until shut down. The ECV5 will stay in default mode until the Warmup Timer expires and the ECV5 is receiving a valid O₂ sensor signal from the Catalyst Monitor. Once the warm up period is over and a valid O₂ reading is received, the ECV5 will go in to AFR mode. At this point, the ECV5 will vary the fuel pressure in order to maintain a desired air-to-fuel ratio. If a NOx sensor is installed on the system, the Cat Monitor will adjust the O₂ sensor set-point to compensate for changes (i.e., ambient air temperature, load, or even degradation of the catalyst) throughout the day. If the ignition confirm signal drops, the ECV5 valve will close, the heater for the O₂ sensors and NOx sensor will turn off, and the system will wait for the engine to restart.

The System

The system consists of the following components:

- The ECVI box and display with terminal strips to land wire from various other components.
- The ECV5 AFR control valve. The ECV5 contains a microprocessor that reads a voltage from an oxygen sensor and modulates the outlet pressure of the valve to control the air to fuel ratio of the engine. The system configuration may contain one or two ECV5s depending on if the application is a single or dual bank engine.
- The Catalyst (Cat) Monitor The Cat Monitor interfaces the wide band O₂ sensors and NOx sensors with the ECV5. The Cat Monitor can make minor adjustments to the O₂ sensor setpoint within the ECV5 by looking at the NOx sensor. The Catalyst Monitor should be mounted near the exhaust and no more than 30 feet from the O₂ sensors. The NOx sensor is connected to the Cat Monitor via CANbus. The NOx sensor cable length should be no more than 50 ft. distance from the Cat Monitor to the ECVI.

- Oxygen (O₂) sensors The Catalyst Monitor can connect up to two wide band O₂ sensors. One O₂ sensor for the left bank and one for the right bank. The Cat Monitor uses a Bosch LSU4.2 O₂ sensor.
- NOx sensors The NOx sensor is located in the exhaust. On rich-burn engines, the NOx sensor is located after the catalyst. The NOx sensor is connected to the Cat Monitor via CANbus.
- Venturi The venturi serves as a fuel mixer assuring even distribution of the fuel through the airflow. The venturi is located downstream of the ECV5 and somewhere on the air inlet of the engine. The venturi may be standalone or a "drop-in" style that replaces the diaphragm assembly inside the carburetor.

Functional Diagram of ECV5 and System

Full Fuel-Authority

The ECV5 meters all fuel entering the engine from no flow to full flow. This prevents the valve from running out of range in difficult applications such as those with large swings in the heating value of the gas. This feature also enables the valve to change the fuel flow very quickly in response to load transients. The full fuel authority of the ECV5 is key to keeping the emissions within required limits under all conditions.

Pressure Sensor

The ECV5 functions as a high-speed, precision pressure regulator with a setpoint that is electrically driven by an oxygen sensor. An integrated pressure transducer constantly monitors the outlet pressure of the valve. This pressure is communicated to the valve's on-board electronics where it is compared to either the default pressure setpoint or the dynamic setpoint derived from the oxygen sensor input. Any

difference between the pressure measurement and the setpoint is corrected by adjusting the poppet position. This process is repeated every 1 millisecond and the pressure is adjustable from – 8 in. H_2O to 24 in. H_2O . The end result is an electronic pressure regulator that does not suffer from the common problems associated with mechanical regulators such as droop and limited range.

Mechanical Valve Design

Unlike many of the valves used in competing emissions control systems, the ECV5 was specifically designed for reciprocating engines using gaseous fuels. It is not a modified pressure regulator, a biasing restrictor, or a valve borrowed from a different market sector or manufacturer. The valve was completely designed by Continental Controls Corporation for a specific application. Every valve is manufactured at our plant in San Diego California, including all CNC machined components and electronic assemblies. Following are some of the key mechanical design features that contribute to the superior performance of the ECV5.

Balanced Poppet

The ECV5 utilizes a balanced metering poppet. This is a proven design that has been used for decades in numerous industries using flow control valves. Low friction rolling diaphragms counterbalance the forces exerted on the valve poppet by upstream and downstream pressures. This eliminates the need for additional spring and actuator forces to be wasted on overcoming these pressure forces. The result is an efficient valve that uses less power over a wide range of pressures.

Position Sensor

The performance of the ECV5 is further improved using closed loop position control. An LVDT position sensor continually communicates the poppet position to the valve's computer. This signal is then compared to the position setpoint generated by the pressure control loop. Any error in position is quickly corrected. This feature improves transient performance and helps eliminate instability caused by flow forces on the poppet. The position sensor is also a useful diagnostic tool.

High speed Actuator

At the heart of the ECV5 is a high-speed, electromechanical, linear actuator that is used to drive the metering poppet. The actuator is comprised of a powerful rare-earth magnet and a precision wound coil attached to the poppet shaft. When the coil is energized it creates a magnetic field in the opposite direction of that created by the magnet. These opposing forces drive the poppet in the open direction. The closing force is generated by a stainless steel compression spring, making the valve fail-safe in the closed direction. The actuator is capable of generating forces in excess of 20 pounds and going from the fully closed to the fully open position in less than 50 milliseconds. This gives the valve unprecedented response to the ever-changing demands of the engine.

Catalyst (Cat) Monitor

The Cat Monitor is available in three different configurations:

• CM1 – Thermocouple, 4-20 ma input, relay output, CANbus interface, Modbus RTU RS232 interface. Modbus TCP/IP Ethernet interface and an optional 2.4 GHz radio interface.

- CM2 All the functions of a CM1 plus one wide range O₂ sensor. This is what is typically used for a single bank engine.
- CM3 All the functions of a CM2 with an additional wide range O₂ sensor for a dual bank engine with two exhausts.

The Cat Monitor serves several functions:

- The Cat Monitor controls the heater of the O₂ sensor and pump current converts the reading to a linear voltage to percent O₂ signal. One volt is near stoichiometric or lambda one and five volts is atmospheric or 20.9 percent oxygen. This signal is used as a process variable input to the ECV5. On a dual bank system there are individual signals for each bank.
- Reads the exhaust temperature pre and post catalyst. A relay output is provided for a high temperature output.
- A 4-20 ma input is provided for a "Delta-P" transducer. The delta-p transducer is installed with one side measuring the upstream pressure of the catalyst and the other side to the downstream side of the catalyst. The purpose is to measure the pressure drop across the device to detect fouling of the element.
- The Cat Monitor is the interface to the NOx sensor. The Cat Monitor will adjust the O₂ sensor setpoint of each of the ECV5 valves though the CANbus according to the NOx minimization logic.
- Most of the data read by the Cat Monitor is logged to the thumb drive installed inside the Cat Monitor. This is a CSV spread sheet file. The end user can periodically remove the thumb drive for diagnostic purposes or for logging data required under RICE/NESHAP. The light blinking on the Cat Monitor's cover indicates that it is writing to the thumb drive. **Do not** remove the thumb drive while it's in the process of writing. The frequency of the logging is programmable and the data amount that can be stored is dependent on the installed drive's storage capability. With the default settings and 4 GB drive that are installed at the factory, the Cat Monitor can store up to 4 years of data.
- CCC provides an Ethernet interface for a SCADA system or plant PLC.

Wide-Range Oxygen Sensor

When controlling air/fuel mix on an engine running in Rich or Lean Burn mode, it is necessary to use a wide-range oxygen sensor, which has a much greater range than a traditional 2 wire Lambda sensor. The Wide-Range Oxygen sensor, used by CCC in conjunction with the ECV5, is a planar dual-cell limit-current sensor. The sensor element of the wide-range sensor is the combination of a Nernst concentration cell with an oxygen pump cell. When used with its control electronics, the sensor is capable of precise measurement throughout a wide Lambda range (0.7< λ < air). The Nernst concentration cell is held to the stoichiometric voltage (450 mv) by oxygen pumped from the oxygen pump cell where the current to the oxygen pump cell is proportional to the oxygen concentration.

There are several versions of the Bosch sensor. Only Bosch LSU4.2 should be used with the CCC Control Electronics.

Wide-Range Sensor Heater Power Control

The heater control circuitry of the unit does the following:

- Provides power to the heater when an Ignition Confirm signal is received from the ECVI.
- Limits the current to the heater at initial turn-on.
- Ramps up heater current after a delay until the operating point is reached.
- Controls power to the heater so that the internal temperature of the sensor maintains at about 800°C (1472°F).

The control region is determined by measuring the internal ac resistance of the Nernst cell. The Nernst cell resistance is about 80 ohms when the internal temperature is about 800 °C. As the internal resistance drops toward 80 ohms the heater controller takes over and increases/decreases current to the heater to maintain 80 ohms.

The current to the heater must be closely controlled because the accuracy of the measurement is a function of the temperature of the sensor. The connector of the oxygen sensor contains a calibration resistor to normalize current to the oxygen pump cell. The cable from the control electronics to the sensor requires six leads: circuit common, Nernst cell output, two leads for current to the oxygen pump cell and two leads to the heater.

ECVI

The ECVI provides an interface for changing and viewing parameters in an ECV5 AFR system during initial setup and operation. The display communicates with the ECV5 (two ECV5s in a dual bank installation) and the Catalyst Monitor over a Modbus network, and provides access to settings such as default pressure or oxygen sensor setpoint. Parameters displayed include catalyst temperatures and differential pressure from the Catalyst Monitor, and valve position, fuel pressure, and current oxygen sensor reading from the ECV5.

The ECVI provides a central location for system wiring as well as parameter touch screens. CANbus communication between devices, analog signals between devices, and power distribution to each device are wired on the board located inside the ECVI.

NOx Sensor

Continental Controls has developed a patented method for using a NOx sensor in rich burn applications. The NOx sensor is installed after the catalyst in the exhaust and connected to the Cat Monitor via the CANbus. The Cat Monitor continually reads the NOx sensor and adjusts the O₂ sensor setpoint to the optimal setpoint reducing NOx without raising the level of CO significantly.

Using the NOx sensor, the Cat Monitor can detect whether the engine is running too rich or too lean. It's common for the O_2 sensor setpoint to vary throughout the day depending on a number of factors: load, ambient temperature, engine speed, or catalyst temperature. It is not uncommon for the O_2 sensor input to adjust more than .005 lambda in the course of a day. Furthermore, the system can make corrections for changes in the condition of the catalyst or oxygen sensor due to age and degradation. NOx readings below 1ppm are typical when implementing NOx sensor control depending upon the condition of the catalyst elements. Dithering is an important control feature when implementing. Using the NOx sensor without dithering may cause large spikes in CO to occur.

The NOx sensor cable has 24vdc on one of its contacts. If the NOx sensor is not connected, care must be taken not to let the wires short across each other or to ground. **Do Not Tape Them Together.**

Thermocouples

The thermocouple supplied by CCC is a type K thermocouple in a stainless steel probe for a ¼ inch thermo well. The wire is stranded type K with "Teflon" insulation for heat resistance and with a standard size thermocouple connector with 2 male contacts. The cable supplied with the thermocouple assembly is stranded, twisted pair shielded, type K with a mating connector and has the same insulation. Although the shielding may not be required in all installations it is recommended that it be used.

4-20ma input for a Delta-P transducer

The cat monitor has the prevision to connect a 4-20m loop powered presser transducer to measure the delta-pressure across the catalyst. These connections are made via a two wire Belden type cable that is connected to the main cable harness...(See cable drawing) The cat monitor can be programed to generate a fault or shutdown based on the level of delta pressure. This data is also logged on the thumb drive.

The Delta-p transducer has 24vdc on one of its contacts. If the Delta-p sensor is not connected, care must be taken not to let the wires short across each other or to ground. **Do Not Tape Them Together.**

ECV5 Installation Instructions

The ECV5 gas-metering valve should be inspected immediately after unpacking. Check for any damage that may have occurred during shipping. If there are any questions regarding the physical integrity of the valve, call Continental Controls immediately.

NOTE

IF POSSIBLE, KEEP THE ORIGINAL VALVE'S SHIPPING CONTAINER. IF FUTURE TRANSPORTATION OR STORAGE OF THE VALVE IS NECESSARY, THIS CONTAINER WILL PROVIDE THE OPTIMUM PROTECTION.

Things to keep in mind:

- Always provide an adequate supply pressure for the application. Ideally, the valve should stroke about 70% at full steady state load.
- Supply the valve with 24 VDC, 5 amps at the valve. Dual bank units need 5 amps per valve. Using small gauge wire may cause a large voltage drop resulting in an inadequate power source at the valve.
- Avoid ground loops when connecting the ECV5.
- Never install valve wires within the same conduit or in close proximity to high voltage power sources.
- Never paint the valve.
- Do not install the value in such a manner where condensate may build up inside the electronics housing.
- Do not weld.

The ECV5 is designed to be installed on natural gas fired reciprocating engines.

Locate the ECV5 so that there is a minimum of flow restrictions between it and the carburetor or mixing venturi when considering where to place the ECV5. There should be no valves other than a potential bleed valve downstream of the ECV5.

The ECV5 should be installed downstream of the shut off valve. The ECV5 is generally able to overcome problems with pressure control at various distances from the carburetor or mixing bowl. It appears that the optimum distance from the ECV5 to the carburetor or mixing bowl is approximately 20-25 in. Maintain the least amount of pressure drop as possible (i.e., no 90-degree elbows, reducers, and close nipples) sweep 90's are ideal.

Vibration on rigid piping supply lines may cause metal fatigue. It is recommended to use flexible hose somewhere in the fuel supply to the valve, rather than installing completely rigid piping, allowing engine vibration to be absorbed rather than transferred to the carburetor or mixing Venturi. Engine

On dual bank units, it is ideal to try, as close as is possible, to mirror the install on both sides of the engine so that the pressure drop to each carburetor or mixing Venturi is essentially the same.

A balance line should be connected from the air box side of the carburetor or mixing venturi to the reference port on the side of the ECV5 control housing on turbo charged units. The reference port is the Allen head plug with the hole in the center. This port is a # 4 SAE straight thread, O-ring port. The thread size is 7/16 - 20.

NOTE : DO NOT USE NPT FITTINGS!

ECVI Monitor Screens

This section describes the ECVI monitor screens for single or dual bank engines. The ECVI monitor screens display the ECV5 and Catalyst Monitor functions via a graphical interface in real time such as flow rate, pressure, actuator position, pressure setpoints, pre and post Cat temperatures, etc. Screens for single bank engine configuration are pictured on the left side of the pages; screens for dual bank engine configuration are pictured on the right. Where there is only one screen, it is good for both configurations.

Initial Display Screen

The Initial Display Screen appears upon power up of the ECVI. From either a single bank engine configuration or a dual bank engine configuration may be selected. The Main screen for the selected configuration will be displayed and accessible.

Main Screen

The Main Screen displays an overview of the ECV5/Cat Monitor system. It is accessed by pressing either the Single Bank Engine or the Dual Bank Engine button. The Main Screen lets the operator see at a glance how the system is operating such as pre and post catalyst temperatures, differential pressure, O₂ setpoint, and pressure setpoint.

Press any of the buttons at the bottom of the screen to access other screens and functions.

Pressure/Position Measurement Screen

The Pressure/Position screen lets the operator view the downstream pressure measured in inches of water column. It also lets you see the position of the valve actuator and the percentage the valve is open.

The Pressure/Position Measurement Screen displays the following parameters:

- fuel pressure setpoint (Sp)
- fuel pressure process variable(Pv)
- pre-catalyst temperature
- post-catalyst temperature
- differential pressure
- ECV5 control mode:
 - Engine Stopped
 - Default Control

AFR Control

Press any of the buttons at the bottom of the screen to access other screens and functions.

Catalyst Monitor Screen

The Catalyst Monitor Screen lets the operator view the O_2 level setpoint and trim values, NOx sensor output, whether the engine is running lean or rich, and the trimming direction. It also shows the communication status between the Cat Monitor and the ECVI.

Catalyst Monitor	Catalyst Monitor	
Communication Status Petive NOx Sensor NOx Sensor 0 1500 Pv ppm 0 59 ppm 0 2 Sensor Lambda 0 2 Sensor Lambda	Communication Status Potive NOx Sensor NOx Sensor 1500 NOx Sensor 1500 NOx Sensor NOx Sensor NOx Sensor NOx Sensor NOx Sensor Pv ppm NOx Sensor Pv ppm NOx Sensor Pv ppm NOx Sensor Pv ppm 1500 NOx Sensor Pv ppm 1500 NOx Sensor Pv ppm 1500 NOx Sensor Pv ppm 1007 NOx Sensor Pv ppm NOX Sensor Pv ppm NO	
Pressure Main Diagnostics Setup	Pressure Main Diagnostics Setup	

The Catalyst Monitor Screen displays the following parameters:

- NOx sensor setpoint (Sp) Only used on lean-burn applications
- NO_X sensor process variable(Pv)
- O₂ sensor setpoint dynamic (expressed in Lambda)
- O₂ trim (expressed in Lambda)
- O₂ trim direction:
 - Leaner
 - Richer
- Communication Status:
 - Active
 - Timeout

Press any of the buttons at the bottom of the screen to access other screens and functions.

Flow Meter

The Flow Meter Screen lets the operator view the fuel flow rate. It also keeps track of flow for various time periods.

Flow Meter Ver.0.00	
Current Flow	Accumulated Flow f 0.0 scf
C1	ear Accumulated
Current Hour	Previous Hour f 0.0 scf
Today 0.0 sc1	Yesterday f 0.0 scf
This Month 0.0 sci	f 0.0 scf
This Year 0.0 sct	f Last Year 0.0 scf
Communication Status	: Timeout Back

The Flow Meter displays the following parameters:

- Current flow
- Accumulated flow
- Current hour accumulated flow
- Current day accumulated flow
- Current month accumulated flow
- Current year accumulated flow
- Previous hour accumulated flow
- Yesterday accumulated flow
- Last month accumulated flow
- Last year accumulated flow
- Communication Status:
 - Active
 - Timeout

Pressing the **Clear Accumulated** button will zero the Accumulated flow parameter.

Press the Back button to return to the Main Screen.

Diagnostics Screen

The Diagnostics Screen is used for diagnosing problems dealing with Ethernet connections, NOx Sensor, O_2 trim, and CANbus setup. The Left Bank CAN Active indicator should be green on both single and dual bank configurations. If not, check Left bank CAN address = 1. The Right Bank CAN indicator should be green for dual bank configurations. If not, check Right bank CAN address = 2. The NOx CAN active indicator should be green if the NOx Sensor is present. If not, check the NOx Sensor status or NOx Sensor wiring. **Power must be cycled for a CAN address change to take effect.**

Diagnostics	Diagnostics
Eth Status IP Address Cable Disconnected 192 168 1 18 Tx 0 Rx 0 Last Packet At: 0 0 0	Eth Status IP Address Cable Disconnected 0 0 0 Tx 0 0 0 0 Rx 0 0 0 0 Last Packet At: 0 0 0 0
Trimming Status CANbus is OFF NOx Sensor Status Not Used	Trimming Status Ready/Active NOx Sensor Status Marmup NOx Can Active NOx Can Active
Left DP Status 1 14500 DP Status 2 1334 Back	Left DP Status 1 14500 DP Status 2 1362 Right DP Status 1 14500 DP Status 2 1329 Back

The Diagnostics Screen displays the following parameters:

- Ethernet connection status:
 - Cable Disconnected
 - IP Address Not Set
 - Waiting for IP Address
 - MAC Address not Set
 - Not Connected
 - Connected
- Trimming status:
 - Ready/Active
 - CANbus is OFF
 - Not in AFR Mode
 - NOx Signal not ready
 - NOx Heater Error
 - NOx Error
 - Trim Limits not set
- NOx Sensor status:
 - Warmup

- Valid
- Not used
- OFF
- IP Address:
 - Dynamic IP
 - Static IP
- CANbus status:
 - Active Green button
 - Inactive Red button

Press the Back button to return to the Main Screen.

Settings Screen

The Settings Screen is used to enter the parameters and functions that the other screens monitor. Pressing a particular screen button displays that setup screen for entering parameters (i.e., pressing the Modbus button displays the Modbus Setup Screen). After parameters have been entered, press Save Settings to store the new parameters.

Press the Init Display button to return to the Initial Display Screen.

Press the Back button to return to the Main Screen.

ECVI Settings Screens

This section describes the ECVI Settings screens for single or dual bank engine configurations. The ECVI settings screens are used to enter various parameters and functions for the ECV5 and Catalyst Monitor via a graphical interface such as flow rate, pressure and actuator position, pressure setpoints, pre and post Cat temperatures, etc. Screens for single bank engine configuration are pictured on the left side (or

left bank) of the pages; screens for dual bank engine configuration are pictured on the right (or right bank). Where there is only one screen, it is good for both configurations.

Initial Display Screen

The Initial Display Screen appears upon power up of the ECVI. From there either a single bank engine configuration or a dual bank engine configuration may be selected. The Main screen for the selected configuration will be displayed and accessible.

Main Screen

The Main Screen displays an overview of the ECV5/Cat Monitor system. It is accessed by pressing either the Single Bank Engine or the Dual Bank Engine button. The Main Screen lets the operator see at a glance how the system is operating.

Press the Setup button at the bottom of the screen to access the Setup Screen.

Settings Screen

The Settings Screen is the interface used to select the various screens to enter parameters and functions for monitoring. Pressing a particular screen button displays that setup screen for entering parameters

ECV5 Installation and Operating Manual, 50500000, Rev F
(i.e., pressing the Modbus button displays the Modbus Setup Screen). After parameters have been entered, press the Save Settings button to store the new parameters. To enter parameters on the various screens, see *Procedure for Entering Parameters on Setup Screens* in this section.

Emission Control Valve Interfa Settings	ce Emission Control Valve Interface Settings
Catalyst Free Air Monitor Calibration CAN Bus ModBus	s Catalyst Free Air CAN Bus ModBus ModBus
02 Sensor Dynamic Schedule Fuel Pressure Ditheri	ng 02 Sensor 02 Sensor Fuel Pressure Right Bank Right Bank Fuel Pressure Right Bank
	Dynamic Dynamic Dithering Dithering Dithering Dithering Left Bank Right Bank
Opt Start Save Settings	Opt Start Opt Start Save Left Bank Right Bank Settings
Init Catalyst Monitor Ver. 1.51 Display ECV5 Ver. 3.4	ack Init Catalyst Monitor Ver. : 1.51 Display 3.4 : ECV5 Ver. : 3.4 Back

Press the Init Display button to return to the Initial Display Screen.

Press the Back button at the bottom of the screen to return to the Main Screen.

CANbus Setup Screen

The CANbus assignment screens are intended to display and allow correcting of CANbus addressing. The number shown in the box should match the default listed. If not, it can be changed manually.

Press the Back button to return to the Settings Screen.

Free Air Cal Screen

The Free Air Cal screen is a required calibration for O_2 Sensor functionality. On screen directions must be followed. Once setup is complete, pressing the Free Air Cal button begins the process. The status above the button will display the status of the calibration.

Note: Do not change screens during the Cal process.

Fre	e Air Calibrat	ion
		r before
		on process.
	Free Air Cal	Prot
		Back

Press the Back button to return to the Settings Screen.

To perform the Free Air Cal procedure, see *Setup of the ECV5 with Cat Monitor with IDEC Display* in Chapter 9.

Fuel Pressure Setup Screen

The Fuel Pressure Setup screen allows the operator to set ECV5 fuel pressure parameters. The graph screen provides a line chart to show device status over time. The controls on this page allow for numeric input:

Parameter Overview:

- **Default Pressure** Discharge pressure setpoint the ECV5 will aim to reach/maintain in Default control mode.
- **KP Gain** The starting value for the proportional gain (KP), used to calculate proportional output which is set in proportion to the current error. The proportional gain accelerates the movement of the process variable towards setpoint while in closed pressure control loop. The proportional component depends only on the error, which is the difference between the setpoint and the process variable.
- KI (min) The starting value for the Minimum Integral Gain (KI) used to dynamically calculate the actual integral gain based on the valve's current position.
- KI (max) The starting value for the Maximum Integral Gain (KI) used to dynamically calculate the actual integral gain dynamically based on the valve's current position. The integral gain accelerates the movement of the process variable towards setpoint, integrating the error over time, and eliminating the residual steady-state error that occurs with a pure proportional controller.
- Minimum Pressure Absolute minimum limit for the operational fuel pressure.
- Maximum Pressure Absolute maximum limit for the operational fuel pressure.

Press the Back button to return to the Settings Screen.

O₂ Sensor Setup Screen

The O_2 Sensor Setup screen allows the operator to set the O_2 Sensor values. The graph screen provides a line graph to show device status over time. (Controls all for numeric input of the O_2 setpoint and O_2 gain.) This is where the time is set for how long to stay in Default Mode.

Parameter Overview:

• **O₂ Sensor Setpoint** – The starting value for the target O₂ setpoint used in closed O₂ control loop.

- The ECV5 will aim to reach/maintain this setpoint while in Air Fuel Ratio control mode.
- The O₂ setpoint could be further adjusted by dynamically calculated O₂ trim (computed within Catalyst Monitor, and sent to ECV5 via CANbus)
- **O₂ Gain** Integral gain used in O₂ closed control loop.
 - The integral term accelerates the movement of the process variable towards setpoint, integrating the error over time.
- Warmup Timer The wait period (in seconds) to allow the oxygen sensor to reach the operating temperature. The Warmup Timer starts counting down when the ECV5 control mode is changed from Stopped to Default (Ignition Confirm signal is active). When the Warmup Timer expires and the O₂ sensor feedback is within operational range, the valve will switch to Air Fuel Ratio control mode.

Press the Back button to return to the Settings Screen.

O₂ Dithering Setup Screen

The O_2 Dithering Setup screen allows the operator to set the O_2 dithering values.

Ecv5 Dithering Left Bank	Ecv5 Dithering Right Bank
02 Dithering	02 Dithering
Dithering Rate 500	Dithering Rate 500
Dithering Amplitude 150	Dithering Amplitude 10
02 Dithering Slave	02 Dithering Slave
0.000 Press Pv 0.000	0.000 Press Pv 0.000
02 Sp 1.100 Press Sp 0.500	02 Sp 1.100 Press Sp 0.500
Back	Back

Parameter Overview:

- **O₂ Dithering** Enable/Disable toggle switch
- **Dithering Rate** The starting value for the dither frequency.
- **Dithering Amplitude** The dither adjustment over a single period.

Press the Back button to return to the Settings Screen.

To perform the Dithering procedure, see *Setup Dithering and NOx Sensor Trim Using the IDEC Display* in Chapter 9.

Dynamic O₂ Schedule Setup Screen

The Dynamic O_2 Schedule allows for automatic adjustment of the O_2 setpoint based on manifold pressure input (4-20 ma).

Dynamic Schedule Left Bank	Dynamic Schedule Right Bank
Mainfold Pressure 02 Set Point Mainfold Pressure 02 Set Point mA V mA V Point 1 0.00 0.000 Point 6 0.00 0.000 Point 2 0.00 0.000 Point 7 0.00 0.000 Point 3 0.00 0.000 Point 8 0.00 0.000 Point 4 0.00 0.000 Point 10 0.00 0.000 Point 5 0.00 0.000 Point 10 0.00 0.000	Mainfold 02 Set Point Mainfold Pressure 02 Set Point Mainfold Pressure 02 Set Point mA V mA V Point 1 0.00 0.000 Point 6 0.00 0.000 Point 2 0.00 0.000 Point 7 0.00 0.000 Point 3 0.00 0.000 Point 8 0.00 0.000 Point 4 0.00 0.000 Point 9 0.00 0.000 Point 5 0.00 0.000 Point 10 0.000 0.000
Back	Back

Parameter Overview:

- **ON/OFF** Enable/Disable toggle switch; Note: Dynamic schedule will be automatically disabled if none of the points are set.
- Schedule Points 1-10 At minimum 2 schedule points should be configured if dynamic schedule is to be used.

Press the Back button to return to the Settings Screen.

Optional Start Pressure Settings Screen

The Optional Start Pressure Setup screen allows for optional engine startup with default pressure set below the minimum pressure limit. The graph screen provides a line graph to show device status over time.

Optional Start Settings	Optional Start Settings
Left Bank	Right Bank
Delay Timer 5	Delay Timer 5
Ramp 1	Ramp Rate 1
Note: Used to step up demand if pressure setting is set below minimu 02 Sp 1.100 Press Sp 0.500	Note: Used to step up demand if pressure setting is set below minimu 02 Sp 1.100 Press Sp 0.500
Back	Back

Parameter Overview:

- **Delay Timer –** The wait period (in seconds) prior to pressure demand adjustment.
- Ramp Rate The frequency (in miliseconds) at which fuel pressure demand will be increased in steps of 0.001 in. W. C.

Press the Back button to return to the Settings Screen.

Cat Monitor Setup Screen

The Cat Monitor Setup screen allows the operator to enter parameters for the Cat Monitor.

Catalyst Monit	tor Settings
O2 Set-point Trim Filter Rate 6000 Trim Step 1 Minimum Trim 0 Maximum Trim 0	NOx Sensor Set Point - 0.0 + Gain 3000 Offset 0
Catalyst Temp Pre-cat Overtemp 1200 Post-cat Overtemp 1250	DP Max 20.00 Use Static IP (N) IP Addr 192, 168, 1, 18 Back

Parameter Overview:

- O2 Set point Trim
 - Filter rate Represents the frequency rate at which NOx sensor feedback is sampled.
 - Trim Step O₂ trim adjustment step for the O₂ setpoint.
 - Minimum Trim The absolute minimum limit for the O₂ trim adjustment.

- **Maximum Trim** The absolute maximum limit for the O₂ trim adjustment.
- Catalyst Temperature
 - **Pre-Cat/Post Cat Overtemp** The maximum pre-catalyst and post-catalyst temperature limits for triggering engine shutdown.
- NOx Sensor
 - For lean burn only:
 - **Setpoint** The starting value for the target NOx setpoint used in minimization control algorithm.
 - Gain The starting value for the integral gain in NOx minimization control loop.
 - **Offset** The starting value for the offset adjustment in NOx minimization control loop.
 - DP Max Differential pressure maximum setting used to scale 4-20 ma DP input
 - For use with Ethernet
 - Use Static IP Enable/Disable toggle switch. If disabled, the IP address will be assigned dynamically.
 - IP Address Internet Protocol address assigned to Catalyst Monitor
 - IP address is a 32-bit number consisting of 4 octets in accordance with Internet Protocol Version 4 (IPv4)

Press the Back button to return to the Settings Screen.

Modbus Address Setup Screen

WARNING

Only one device can be connected to the ECV5 while setting the Modbus addresses. Remove wires for all devices except the device you are configuring. Failure to do so may corrupt values stored in the valves or Cat Monitor which my yield unpredictable results. Do not disconnect the valve at the cannon plug.

The unconnected cable will act as an antenna for electronic noise, and prevent communication to the other devices.

The Modbus Setup screen controls how the HMI communicates with the devices:

- Catalyst Monitor = 3
- Right Bank = 2
- Left Bank = 1

Warning: Left and right assignments can be easily reversed programmatically or by being wired in reverse. Follow installation instructions carefully and precisely.

Press the Back button to return to the Settings Screen.

Procedure for Entering Parameters on Setup Screens

To enter parameters on a setup screen, do the following:

1. On the Main screen, select the button according to engine configuration.

The Interface Screen appears.

2. Press Setup.

Settings screen appears.

3. Press the button for the screen you wish to change/modify parameters (in this example, the O₂ Sensor button has been pressed.)

The O₂ Sensor Settings screen is displayed.

4. Press the pad for the parameter you wish to change/modify.

Keypad appears.

<u> </u>	2. 6	1234567890		
7	8	9	CLR	
4	5	6	CAN	
1	2	3	ENT	
0	+/-		ENT	

5. Enter the parameters on the keypad and press ENT.

Keypad disappears.

- 6. Repeat steps 3 through 6 for entering other parameters.
- 7. Press **BACK** when finished.

The Settings Screen appears.

- 8. Press Save Settings
- 9. Repeat steps 3 8 to change/modify parameters on a different screen. If not, then press **Back**.

The Interface screen appears.

ECVI Setup Procedures

Setup of the ECV5 with Cat Monitor Using the ECVI with Idec Display Configuring the Unit

- 1. Upon receipt of equipment, inspect all equipment for damage or missing parts.
- 2. Ensure cable lengths are what is required for installation.

NOTE

ECV5 CABLES ARE 25 OR 50 FOOT LENGTHS, CATALYST MONITOR CABLES ARE 30 FOOT LENGTHS, AND O₂ SENSOR CABLES ARE 30 FOOT LENGTHS. NOx SENSOR EXTENSION CABLES ARE 10 AND 30 FOOT LENGTHS.

- 3. Install required equipment where desired, paying attention to the cable lengths.
- 4. After installing the Venturi Inserts, locate and close the load screws, paying attention to the amount of turns to screw it all the way in. Then turn the load screw out to approximately 4 turns and mark it.
- 5. Run all cables through what is desired by customer (i.e., flex or rigid conduit). When pulling wiring through conduit, for the O₂ Sensor wires and the NOx Sensor wire, ensure the connector is removed from the wires. For the O₂ Sensor wires a special tool is required. For the NOx Sensor wire, a paper clip is a good tool to use. Write down the wire color to number on each of the connectors.
- 6. If not using the Differential Pressure (DP) Gauge with the Catalyst Monitor, the cable end needs to be trimmed and taped to prevent a short. This cable will have 24VDC Positive supplied to it when 24 VDC power is supplied to the Catalyst Monitor.
- 7. If using the Differential Pressure Gauge with the Catalyst Monitor, do the following (see illustration):

- a. Remove cover on top of DP Gauge.
- b. Land black wire to terminal 1 on DP Gauge 4-20 mA Return.

- c. Land red wire to terminal 3 on DP Gauge **4-20 mA Loop Power.**
- d. Land the shield to the DP Gauge Ground terminal.
- e. Leave terminal 2 empty.
- f. Replace cover to top of DP Gauge.
- 8. Trim all open-ended excess wires and land to the ECVI.

NOTE

THE CUSTOMER IS REQUIRED TO PROVIDE A 24 VDC POSITIVE AND NEGATIVE LEAD (ENSURING THE CORRECT AMPERAGE, 5 AMPS PER ECV5 AND 5 AMPS FOR THE CATALYST MONITOR) TO THE ECVI FOR POWER TO THE CCC EQUIPMENT AND A 24 VDC POSITIVE FOR THE IGNITION CONFIRM. THE IGNITION CONFRIM SIGNAL FROM THE CUSTOMER SHOULD BE FROM A SOURCE THAT WILL TAKE AWAY POWER IF A FAULT OCCURS WHICH WILL IN TURN ALLOW BOTH ECV5'S TO SHUT THUS SHUTTING OFF THE FUEL TO THE ENGINE. SOME SOURCES OF 24 VDC POSITIVE CAN BE FROM THE PLC, THE ELECTRICALLY OPERATED FUEL SOLENOID, AN OIL PRESSURE SWITCH, ETC.

DO NOT CONNECT THE CUSTOMER'S 24 VDC POWER WIRES AT THIS TIME.

- 9. Disconnect the ECV5 Cables from the ECV5's.
- 10. Disconnect the O_2 Sensor cables from the Cat Monitor.
- 11. Disconnect the Cat Monitor Cable from the Cat Monitor.
- 12. With power shut off, connect the customer's 24 VDC power wires.
- 13. Turn the customer's power on to CCC equipment.
- 14. Measure with a voltage tester all red wires as power or hot and all black wires as return or Negative, ensuring correct polarity and DC Voltage.
- 15. Once satisfied on correct set up, shut off the power from the customer and reconnect all CCC equipment ONE AT A TIME (Cat Monitor, ECV5 Left Bank, ECV5 Right Bank and O₂ Sensor cables.
 - a. Turn on power from the customer after connecting the Cat Monitor.
 - b. Ensure the Cat Monitor powers up.
 - c. Shut off power from the customer and reconnect the ECV5 Left Bank.
 - d. Turn on power from the customer after connecting the ECV5 Left Bank.
 - e. Ensure the ECV5 Left Bank powers up.
 - f. Shut off power from the customer and reconnect the ECV5 Right Bank.
 - g. Turn on power from the customer after connecting the ECV5 Right Bank.
 - h. Ensure the ECV5 Right Bank powers up.
 - i. Shut off power from the customer and reconnect the O_2 Sensor cables.
 - j. Turn on power from the customer after connecting the O₂ Sensor cables.

k. Ensure the O₂ Sensor cables powers up.

You now have power to the Cat Monitor, ECV5 Left Bank, ECV5 Right Bank and O₂ Sensor cables.

Setting Device ID'S- ON THE IDEC Display

NOTE

BY DEFAULT, THE CATALYST MONITOR AND THE ECV5'S WILL HAVE THE MODBUS/ DEVICE ID SET TO 1. THE MODBUS/DEVICE ID WILL HAVE TO BE CHANGED ON THE RIGHT BANK ECV5 AND THE CATALYST MONITOR BEFORE IT CAN COMMUNICATE WITH THE IDEC DISPLAY.

Equipment	Modbus ID	Tx Color	Rx Color
Left Bank ECV5	1	Green	White/Green
Right Bank ECV5	2	Green	White/Green
Cat Monitor	3	Green	Brown

- a. Assign Cat Monitor
 - 1) Remove customer power to CCC equipment.
 - 2) On the ECVI PWB, remove the Tx and Rx connections to the Right and Left Bank ECV5's [**ONLY** the Cat Monitor communication wires should be connected].
 - 3) Turn on customer power to CCC equipment.
 - 4) From the main screen of the IDEC Display press the **SETUP** button.
 - 5) From this screen press the **MODBUS ID** button.
 - 6) To the right of **CONFIGURE Cat Monitor**, press **ASSIGN Cat Monitor**. Once you press the button, a number 3 will appear in the field.
 - 7) Press the **BACK** button and on this screen press the **SAVE SETTINGS** button.

b. Assign **Right Bank ECV5**

- 1) Remove customer power to CCC equipment.
- 2) On the ECVI PWB, remove the Tx and Rx connections to the Cat Monitor (the Left Bank ECV5 is already disconnected).
- 3) On the ECVI PWB connect the Tx and Rx connections to the Right Bank ECV5 [**ONLY** the Right Bank communication wires should be connected].
- 4) Turn on customer power to CCC equipment.
- 5) From the main screen of the IDEC Display press the SETUP button.
- 6) From this screen, press the MODBUS ID button.

- 7) To the right of CONFIGURE RIGHT BANK ECV5, press the ASSIGN RIGHT BANK button. Once you press the button, a number 2 should appear in the field.
- 8) Press the BACK button and on the new screen press the **SAVE SETTINGS** button.

c. Assign Left Bank ECV5

- 1) Remove customer power to CCC equipment.
- 2) On the ECVI PWB, remove the Tx and Rx connections to the Right Bank ECV5 (the Cat Monitor is already disconnected).
- 3) On the ECVI PWB connect the Tx and Rx connections to the Left Bank ECV5 [**ONLY** the Left Bank communication wires should be connected].
- 4) Turn on customer power to CCC equipment.
- 5) From the main screen of the IDEC Display press the SETUP button.
- 6) From this screen press the MODBUS ID button.
- 7) To the right of CONFIGURE LEFT BANK ECV5, press the ASSIGN LEFT BANK button. Once you press the button, a number 1 should appear in the field.
- 8) Press the BACK button and press the SAVE SETTINGS button.
- 9) Remove customer power to CCC equipment.
- 10) Connect the Cat Monitor and Right Bank Tx and Rx [All communication wires should now be connected].
- 11) Turn on customer power to CCC equipment and check;
 - On the Main Screen you should see (if done correctly) Engine Stopped on both the Right and Left Bank ECV5's.
 - Press the **CATALYST MONITOR** button and look at the top of the new screen and you should see (if done correctly) **ACTIVE** under Communication Status.

NOTE

IF OPERATING WITH ONLY ONE ECV5 (SINGLE BANK UNIT), THE CATALYST MONITOR IS THE ONLY CCC EQUIPMENT WHERE THE MODBUS ID WILL HAVE TO BE CHANGED. THE ECV5 WILL ALREADY HAVE THE CORRECT MODBUS/DEVICE ID. DEFAULT MODBUS ID = 1.

Setting Up CANbus

- 1. From the Main screen press the **SETUP** button.
- 2. Press the **CANbus** button.
- 3. Ensure that the Left Bank CANbus address is set to 1 and the Right Bank CANbus address is set to 2.
- 4. After setting the Can Bus Id's, press the **BACK** button then press the **SAVE SETTINGS** button.
- 5. Cycle power for changes to take effect.

Initial Startup Settings

The following are settings that must be changed for initial startup.

a. Press the **SETUP** button then press the **FUEL PRESSURE LEFT BANK** button.

- b. Change the Default Pressure from 4.5" to 0.050".
- c. Press the **BACK** button and then press **SAVE SETTINGS**.
- d. Press the **FUEL PRESSURE RIGHT BANK** button and change the Default Pressure from 4.5" to 0.050".
- e. Press the **BACK** button and then press **SAVE SETTINGS**.
- f. Press the O₂ SENSOR LEFT BANK button
- g. Change the O₂ Setpoint from 1.000 to the following; for a Rich Burn, ensure the O₂ setpoint is 0.980 and for a Lean Burn 2.000. Now change the Warmup Timer to 300 seconds.
- h. Press the **BACK** button and then press **SAVE SETTINGS.**
- i. Press the O₂ SENSOR RIGHT BANK button.
- j. Change the O₂ Setpoint from 1.000 to the following; for a Rich Burn, ensure the O₂ setpoint is 0.980 and for a Lean Burn 2.000. Now change the Warmup Timer to 300 seconds.
- k. Press the **BACK** button and then press **SAVE SETTINGS**.
- I. All other settings should be at the correct value for engine starting operation.

Conducting a Free Air Calibration

The following are the steps for conducting a Free Air Calibration of the O₂ Sensors.

- a. Ensure the O2 Sensors are removed from the exhaust and are still plugged in to the connector.
- b. From the Main Screen press the SETUP button.
- c. Press the FREE AIR CALIBRATION button.
- d. Read the instructions and then press the FREE AIR CAL button.
- e. After approximately 3 minutes, the test will tell you if the Free Air Calibration was successful or if it failed. If the Free Air Calibration failed, carefully touch each O₂ sensor and feel which one is hot. If the O₂ Sensors are hot but not too hot to hold, that is a good O₂ sensor. If the O₂ sensor is cold or too hot to hold, that is a bad O₂ sensor. If that is the case then replace the bad O₂ sensor and conduct another Free Air Calibration. ***CAUTION: Careful handling is a must! They will burn you!**
- f. Once the Free Air Calibration is successful, press the BACK button and the press the SAVE SETTINGS button.
- g. Re-install the O2 sensors back into the exhaust system.

Starting the Engine

- 1. Start the engine and run at low idle with no load. You may have to adjust the Default Pressure for engine starting because the Default Pressure is sometimes engine specific. The setting of 0.050 is usually the correct setting for most engines utilizing the External Venturi or the Venturi inserts.
- 2. Watch the IDEC Display and listen to the engine, monitoring engine stability and ensuring the Pressure Feedback or Pressure PV (Processed Voltage) is meeting the Pressure Setpoint. If the engine is unstable adjust the pressure gains as required.

- 3. When engine is stable and all conditions look normal, watch the engine go into Air Fuel Ratio. Just before the engine actually goes into Air Fuel Ratio, you will see an O₂ Sensor Feedback Voltage. Remember, if the Voltage is to the right of the O₂ Sensor Setpoint, the engine is Lean. If the voltage is to the left of the O₂ Sensor Setpoint, the engine is Rich.
- 4. You will usually be able to see (through the Display) when the engine goes into Air Fuel Ratio. Look at the Main Screen of the Display and ensure that both banks go into Air Fuel Ratio. Then monitor the Pressure Setpoint ensuring that the Pressures are not too excessive (above 4.000 inches) or too low (into a negative). If either of these is happening, adjust the Carburetor Load Screw (for venturi inserts, for venturi standalone use venturi adjustment) to maintain approximately 1.000 inch. (See note below) Use the left then right load screws and bring pressures up or down to 1.000 inch slowly and with minimal separation between banks.

NOTE

WHEN ADJUSTING THE LOAD SCREW, TURNING THE LOAD SCREW IN (TIGHTENING) WILL INCREASE THE PRESSURE SETPOINT AND TURNING THE LOAD SCREW OUT (LOOSENING) WILL REDUCE THE PRESSURE SETPOINT. THIS CAN ONLY BE DONE WHEN BOTH ECV5'S ARE IN THE AIR FUEL RATIO MODE. WHEN AN ADJUSTMENT IS MADE IT IS NOT IMMEDIATE. LET THE PRESSURE SETPOINT SETTLE OUT THEN ADJUST AGAIN IF NEEDED.

- 5. Once all pressures are correct and the O₂ Sensor Process Voltage is meeting the Setpoint, bring the engine up to rated speed. Again, monitor all pressures and voltages.
- 6. Once satisfied, start bringing on load. Start with a light load, monitoring all pressures and voltages and adjust as necessary.

NOTE

ONCE THE PRESSURE LOOP IS ADJUSTED IN DEFAULT MODE, THERE SHOULD BE NO REASON TO ADJUST AGAIN. ONCE THE ENGINE IS RUNNING IN AIR FUEL RATIO MODE THE ONLY GAIN THAT MIGHT NEED TO BE ADJUSTED IS THE O₂ SENSOR GAIN AND THIS IS USUALLY WHEN THERE IS A LIGHT LOAD OR NO LOAD CONDITION.

- 7. When engine is up at full load and operating normally, adjust your Supply pressure to bring the ECV5 valve position to approximately 60 to 75 %. For a Lean Burn Engine, the Position is usually lower because you have to ensure that the Pre-Combustion Gas Pressure is correct for the engine.
- Once all conditions are normal, bring the engine into compliance USING THE LEFT AND RIGHT O2 SENSOR SETPOINT ONLY. No adjustment of the Load/Power Screw is required to bring the engine into compliance.
- 9. When engine is running at Full Load and in compliance adjust the load screw to bring each ECV5 Pressure Setpoint from between 1.000" to 4.000". When adjusting the load screw only turn 1 flat of the Hex Bolt at a time. Let the bank that is being adjusted settle out then adjust the other side as necessary to balance each bank.

Changing Settings for Normal Operation

When the engine is running at Full Load and is in compliance the following settings will have to be changed for normal operation:

- a. From the Main Screen of the Display, press the **SETUP** button.
- b. Press the **O**₂ SENSOR LEFT BANK button.
- c. Change the O2 Sensor Warmup Timer from 300 seconds (where it was first set for initial start-up) to whatever is desired by the customer. From the factory it is set to 60 seconds. It has been noticed that at times the customer will operate the engine at a light or no load condition until the Oil temp reaches a certain point. If this is the case then the O2 Sensor Warmup Timer should be set to allow for engine warmup time before going into Air Fuel Ratio Mode. Usually 120 seconds is sufficient.
- d. Once the O2 Sensor Warmup Timer is changed to the customer's specification, press the BACK button and then Press the SAVE SETTINGS button.
- e. Press the O2 SENSOR RIGHT BANK button.
- f. Do the same as in step c.
- g. Once the O2 Sensor Warmup Timer is changed to the customer's specification, press the BACK button and then Press the SAVE SETTINGS button.
- h. Press the FUEL PRESSURE LEFT BANK button.
- i. Change the Minimum and Maximum pressure to a point that it will allow the ECV5's to fully operate between these points.
- j. In step 9 above, the load screw was adjusted to bring each ECV5 Pressure Setpoint to approximately 1.000" to 4.000" when operating at a Full Load.

NOTE

THE MINIMUM AND MAXIMUM PRESSURE SETPOINTS ARE SOFTWARE RAILS THAT WILL PROTECT THE CATALYST AND ENGINE. IF AN O₂ SENSOR FAILS IT WILL FAIL IN THE RICH POSITION (DOWN TO "O" ON THE O₂ SETPOINT). ONCE THE ECV5 SEES "100" ON THE O₂ SETPOINT, IT WILL AUTOMATTICALLY TRANFER MODES FROM AIR FUEL RATIO TO THE DEFAULT MODE. WITHOUT THESE SOFTWARE RAILS THE AFFECTED BANK COULD OVER FUEL AND IN TURN DAMAGE THE CATALYST OR ENGINE.

- k. Normally, setting Minimum Pressure rail to -1.000" and the Maximum rail to 8.000" is sufficient for normal engine operation; however, when an engine has not been operated for a couple of days and the atmosphere is cold, the pressure Setpoint can be higher than normal (In Air Fuel Ratio Mode) until the engine warms up. So the spread of the Minimum and Maximum Pressure settings must be sufficiently set as to not impede the operation of the engine and allow the engine to meet its emissions requirements.
- I. Once changed to the desired limits, press the BACK button and then press the SAVE SETTINGS button.
- m. Press the FUEL PRESSURE RIGHT BANK button.
- n. Change the Minimum and Maximum Pressure to the same as the previous bank.

o. Press the **BACK** button then press the **SAVE SETTINGS** button.

ONCE THE ENGINE IS STABLE AND OPERATING IN COMPLIANCE, FOLLOW THE PROCEDURE FOR SETTING UP THE NOX SENSOR TRIM AND THE O₂ DITHERING.

Optional Equipment

Cables

The ECV5 interface cable is a custom cable, which includes all necessary wires between the ECV5 and ECVI interface. The wire is sized appropriately for its use and the wires are color-coded.

Turbo Balance Line

When the ECV5 is used with a turbocharger where the fuel is added to pressurized air (high side mixing), the ECV5 needs to control on the differential pressure of fuel over boost pressure. For this application the ECV5 will need a $\frac{1}{4}$ " turbo boost line to provide reference pressure from the boost side of the turbocharger. Normally if the ECV5 has been ordered specifically for this Turbocharged, High Side Mixing application, the ECV5 will be shipped with a Male SAE MS Connector $\frac{1}{4}$ " tube x 7x16-20 straight thread fitting. Please note: this is a straight thread fitting, not pipe thread.

2. Troubleshooting

Valve Stroke Limited

Check the stroke of the value at full load. If the stroke is less than 70% (they run well at 40 - 50%) then lower the supply pressure to the fuel value.

Pressure Control Loop

Check the pressure control loop. What pressure is required for no load? What pressure is required for full load?

Compare the pressure measured by the Valve to an external measurement on each bank.

Check the pressure control response with the scope to load changes, with O₂ sensor active.

Governor Control

Measure the manifold pressure on each bank. Observe if the butterfly(s) match.

O₂ Sensor

Observe the output of the O_2 sensor(s).

Vary the injection pressure to change the mixture. See if the O₂ sensor voltage changes and how much pressure change is required to change the O₂ sensor voltage. Sensitivity to mixture varies (default mode only).

Are there differences in the carburetors' performance? Do they track?

Check the inlet pressure to the carburetors. Check the adjustments on the carburetors.

ECV5 Installation and Operating Manual, 50500000, Rev F

Product Warranty

Continental Controls Corporation warrants that all goods furnished by CCC are free from defects in workmanship and material as of the time and place of delivery.

As a matter of general warranty policy, CCC honors an original buyer's warranty claim in the event of failure within 12 months of shipment to the end-user, when the equipment has been installed and operated under normal conditions and in accordance with installation instructions contained in the operating manual and generally accepted operating practices.

All warranty work must be performed and CCC's manufacturing facility in San Diego. The customer is responsible for shipment or delivery of the product to the CCC facility. CCC will pay return ground freight. The customer will pay any expedited freight fees.

Technical Assistance

If you need to contact CCC for technical assistance, please provide the following information. You will need to have it handy before contacting CCC.

General	
Your name	
Your Address	
Phone number	
Site Location	
Engine Information	
Manufacturer	
Engine Model	
Number	
Number of Banks	
Fuel type	
Power Output Rating	
ECV5 Information	
Serial Number	
ECVI Information	
Serial Number	

Appendices

ECV5_B Modbus Registers

40x Input Registers

Register	Description	Scaling Factor
40012	O ₂ Sensor Process Variable	1.0E-03
40013	Ignore	
40014	Ignore	
40015	Ignore	
40016	Ignore	
40017	Position process variable	1.0E-02
40018	Position demand	1.0E-02
40019	Manifold pressure	1.0E-03
40020	Pressure demand	1.0E-03
40021	Actuator output	Actual
40022	Ignition confirm	Actual
40023	Actuator power	Actual
40024	Sensor ignore	Actual
40025	Sp adjusted	1.0E-03
40026	Analog input 4-20 mA	1.0E-02
40027	Ignore	
40028	Ignore	
40029	Ignore	
	Position proportional	
40030	contribution	Actual
40031	Position integral contribution	Actual
	Pressure proportional	
40032	contribution	Actual
40033	Pressure integral contribution	Actual
40034	O ₂ integral contribution	Actual
40035	Ingore	
40036	Ignore	
40037	Ignore	
40038	Ignore	
40039	Warmup timer	Actual
40040	Ignore	
40041	Ignore	
40042	Default mode	Actual
40043	Sequence	Actual
40044	Ignore	
40045	O ₂ Sensor Sp selected	1.0E-03

Register	Description	Scaling Factor
	O ₂ Sensor Sp selected in	
40046	lambda	1.0E-04
40047	Start timer	Actual
40048	CAN Tx Error	Actual
40049	CAN Rx Error	Actual
40050	CAN pressure demand	1.0E-03
40051	O ₂ dither value	1.0E-04
40052	CAN O ₂ dither	1.0E-04
40053	Pressure dither value	1.0E-03
40054	CAN pressure dither	1.0E-03
40055	CM O ₂ Sp trim in lambda	1.0E-04
40056	O ₂ Pv in percent O ₂	1.0E-03
40057	O ₂ Sp in percent O ₂	1.0E-03
40058	O ₂ Pv in lambda	1.0E-04
40059	O ₂ Sp in lambda	1.0E-04
40060	Ignore	
40061	Current pressure integral gain	Actual

401x Holding Registers

Register	Description	Scaling Factor
40112	Stroke gain	Actual
40113	Stroke offset	Actual
40114	O ₂ Set-point	1.0E-03
40115	Demand gain	Actual
40116	Demand offset	Actual
40117	mA gain	Actual
40118	mA offset	Actual
40119	O ₂ gain	Actual
40120	O ₂ offset	Actual
40121	Manifold pressure gain	Actual
40122	Manifold pressure offset	Actual
40123	Default Pressure	1.0E-03
40124	Position proportional gain	Actual
40125	Position integral gain	Actual
40126	Pressure proportional gain	Actual
40127	Pressure integral gain	Actual
40128	Load gain prop.	Actual
40129	Load gain int	Actual
40130	O ₂ integral	Actual
40131	Actuator offset	Actual
40132	Maximum pressure	1.0E-03
40133	Minimum pressure	1.0E-03
40134	Serial Number	Actual
40135	Modbus address	Actual
40136	DAC1 gain	Actual
40137	Dac1 offset	Actual
40138	Calibrated	Actual
40139	Diag	Actual
40140	Valve type	Actual
40141	Force ignition confirm	Actual
40142	Force actuator power	Actual
40143	Force sensor ignore	Actual
40144	Save data	Actual
40145	Warmup timer start	Actual
40146	O ₂ Fail timer start	Actual
40147	Actuator limit	Actual
40148	mA minimum	1.0E-02

Register	Description	Scaling Factor
40149	mA maximum	1.0E-02
40150	Set-point minimum	1.0E-03
40151	Set-point maximum	1.0E-03
40152	Sp enable	Actual
40153	Zeroing	Actual
40154	KI minimum	Actual
40155	KI maximum	Actual
40156	Start_timer_start	Actual
40157	Ramp Rate	Actual
40158	Lvdt Limit	Actual
40159	ManPressure Point 0	1.0E-03
40160	ManPressure Point 1	1.0E-03
40161	ManPressure Point 2	1.0E-03
40162	ManPressure Point 3	1.0E-03
40163	ManPressure Point 4	1.0E-03
40164	ManPressure Point 5	1.0E-03
40165	ManPressure Point 6	1.0E-03
40166	ManPressure Point 7	1.0E-03
40167	ManPressure Point 8	1.0E-03
40168	ManPressure Point 9	1.0E-03
40169	O ₂ Set-point Point 0	1.0E-03
40170	O ₂ Set-point Point 1	1.0E-03
40171	O ₂ Set-point Point 2	1.0E-03
40172	O ₂ Set-point Point 3	1.0E-03
40173	O ₂ Set-point Point 4	1.0E-03
40174	O ₂ Set-point Point 5	1.0E-03
40175	O ₂ Set-point Point 6	1.0E-03
40176	O ₂ Set-point Point 7	1.0E-03
40177	O ₂ Set-point Point 8	1.0E-03
40178	O ₂ Set-point Point 9	1.0E-03
40179	O ₂ standard free air	Actual
40180	O ₂ standard zero	Actual
40181	O ₂ calibration value	Actual
40182	O ₂ calibration slope	Actual
40183	O ₂ calibration offset	Actual
40184	Init calibration	Actual
40185	O ₂ calibration complete	Actual
40186	O ₂ correction factor	Actual
40187	Dither Slave enabled	Actual

Register	Description	Scaling Factor
40188	Pressure Slave enabled	Actual
40189	CAN enabled	Actual
40190	O ₂ Dither enabled	Actual
40191	O ₂ Dither period	Actual
40192	O ₂ Dither amplitude	Actual
40193	Pressure Dither enabled	Actual
40194	Pressure Dither period	Actual
40195	Pressure Dither amplitude	Actual
40196	Minimum O ₂ Sp Trim	Actual
40197	Maximum O ₂ Sp Trim	Actual
40198	O ₂ Pv Minimum	1.0E-03
40199	CAN Address	Actual
40200	O ₂ Percent Minimum	1.0E-03
40201	O ₂ Percent Maximum	1.0E-03

Scaling:

 To convert data from the valve represented in fixed-point type to engineering units, multiply the value by the scaling factor. Example: You read 3200 from register 40123 (Default Pressure). 3200*0.001 = 3.2 Default pressure = 3.2 in W.C.
To send data to the valve, convert it to fixed-point format by multiplying the actual setting by reverse scaling factor,

then write data to Modbus register.

You need to set Default Pressure to 4 in. W.C.

4 * 1000 = 4000

Write 4000 to Modbus register 40123.

Register

40144: Value 0x1234(Hex) written to this register,

directs the valve's processor to save holding registers (401x) into static memory for the next power cycle.

CANbus Communications

ECV5 and Catalyst Monitor devices support CAN communications. All messages use the CAN.2.0 B 29-bit Extended Data Form format, bus speed – 250 Kbit/s.

ECV5		
Packet Description	O ₂ Info	
CAN ID	0x19010000	
Byte 0	O ₂ Set point high byte	
Byte 1	O ₂ Set point low byte	
Byte 2	O ₂ Feedback high byte	
Byte 3	O ₂ Feedback low byte	
Byte 4	0	
Byte 5	0	
Byte 6	0	
Byte 7	0	
Packet Description	Pressure Info	
CAN ID	0x1A010000	
Byte 0	Pressure Setpoint High Byte	
Byte 1	Fuel Pressure Setpoint Low Byte	
Byte 2	Fuel Pressure Feedback High Byte	
Byte 3	Fuel Pressure Feedback Low Byte	
Byte 4	Manifold Pressure High Byte	
Byte 5	Manifold Pressure Low Byte	
Byte 6	0	
Byte 7	0	
Packet Description	Misc. Info	
CAN ID	0x1B010000	
Byte 0	Actuator Output High Byte	
Byte 1	Actuator Output Low Byte	
Byte 2	Speed High Byte	
Byte 3	Speed Low Byte	
Byte 4	Sequence High Byte	
Byte 5	Sequence Low Byte	
Byte 6	0	
Byte 7	0	

Cat Monitor		
Packet Description	CM info	
CAN ID	0x17050000	
Byte 0	Pre-Cat Temp High Byte	
Byte 1	Pre-Cat Temp Low Byte	
Byte 2	Post-Cat Temp High Byte	
Byte 3	Post-Cat Temp Low Byte	
Byte 4	Differential Pressure High Byte	
Byte 5	Differential Pressure Low Byte	
Byte 6	0	
Byte 7	0	
Packet Description	NOx Senor Refresh	
CAN ID	0x18FEDF00	
Byte 0	0	
Byte 1	0	
Byte 2	0	
Byte 3	0	
Byte 4	0	
Byte 5	0	
Byte 6	0	
Byte 7	5 = Heater ON; 0 = Heater OFF	
Packet Description	O ₂ Setpoint Trim	
CAN ID	0x10050000	
Byte 0	O ₂ Trim High Byte	
Byte 1	O ₂ Trim Low Byte	
Byte 2	0	
Byte 3	0	
Byte 4	0	
Byte 5	0	
Byte 6	0	
Byte 7	0	

NOx Sensor		
Packet Description	NOx Data	
CAN ID	0x18F00F52	
Byte 0	NOx Low Byte	

Byte 1	NOx High Byte	
Byte 2	O ₂ Low Byte	
Byte 3	O ₂ High Byte	
Byte 4	Status	
Byte 5	Heater Status and Error	
Byte 6	NOx Error	
Byte 7	O ₂ Error	

Descrip	tion	Scale	Range	Unit
O ₂ info (EGC ₂ /ECV5)	O ₂ Set point	0.0001	0-50	Lambda
O ₂ info (EGC ₂ /ECV5)	O ₂ Feedback	0.0001	0-50	Lambda
			Minimum -	
Pressure info	Fuel Pressure	0.001	Maximum	in.W.C.
(EGC2/ECV5)	Set point		Pressure Sp	
			Minimum -	
Pressure info	Fuel Pressure	0.001	Maximum	in.W.C.
(EGC2/ECV5)	Feedback		Pressure Sp	
Pressure info	Manifold	0.001	-50	in.Hg
(EGC2/ECV5)	Pressure	0.001	-50	III.⊓g
Misc info				
(EGC2/ECV5)	Actuator	1	0-4000	Counts
Misc info				
(EGC2/ECV5)	Speed	1	0-3000	RPM
Misc info				
(EGC2/ECV5)	Sequence	1	0-4	Counts

*To convert NOx reading to ppm: **To convert O2 reading to %: (NOx reading * 0.05) - 200 (O₂ reading * 0.000514) - 12

Cat Monitor Modbus Registers

Input Registers

Register	Description	Definition
30001	pre_cat_nox	Ignore
30002	post_cat_nox	NOx reading from post-cat NOx sensor
30003	pre_cat_o2	Ignore
30004	post_cat_o2	O ₂ reading from post-cat NOx sensor
30005	pre_cat_temp	Pre-catalyst temperature
30006	post_cat_temp	Post-catalyst temperature
30007	pre_status_supply	Ignore
30008	pre_status_sensor_heater	Ignore
30009	pre_status_nox_signal	Ignore
30010	pre_status_o2_signal	Ignore
30011	post_status_supply	NOx sensor supply status
30012	post_status_sensor_heater	Nox sensor heater status
30013	post_status_nox_signal	NOx sensor NOx signal status
30014	post_status_o2_signal	NOx sensor O ₂ signal status
30015	pre_status_nox_error	Ignore
30016	pre_status_o2_error	Ignore
30017	post_status_nox_error	Error Code
30018	post_status_o2_error	Error Code
30019	rtc_sec	Real time clock: second
30020	rtc_min	Real time clock: minute
30021	rtc_hour	Real time clock: hour
30022	rtc_wday	Real time clock: week day
30023	rtc_mdate	Real time clock: date
30024	rtc_month	Real time clock: month
30025	rtc_year	Real time clock: year
30026	ecu_lb_can_off	Left bank valve CANbus not detected/turned off
30027	ecu_rb_can_off	Right bank valve CANbus not detected/turned off
30028	pre_nox_can_off	Ignore
30029	post_nox_can_off	NOx sensor CANbus not detected/turned off
30030	battery_voltage	Catalyst Monitor supply voltage
30031	milliamp_input	mA reading from DP
30032	catalyst_dp	Differential pressure across catalyst
30033	nox_heater	NOx heater ON/OFF flag
30034	nox_warmup_timer	Nox/O ₂ heater warmup timer
30035	left_bank_o2_setpoint	Left bank valve - O ₂ sensor setpoint
30036	left_bank_o2_feedback	Left bank valve - O ₂ sensor feedback

Register	Description	Definition
30037	left_bank_press_setpoint	Left bank valve - pressure setpoint
30038	left_bank_press_feedback	Left bank valve - pressure feedback
30039	left_bank_manifold_press	Left bank valve - manifold pressure
30040	left_bank_actuator_output	Left bank valve - actuator output
30041	left_bank_speed	Left bank valve - speed (if applicable)
30042	left_bank_sequence	Left bank valve - sequence
30043	right_bank_o2_setpoint	Right bank valve - O ₂ sensor setpoint
30044	right_bank_o2_feedback	Right bank valve - O ₂ sensor feedback
30045	right_bank_press_setpoint	Right bank valve - pressure setpoint
30046	right_bank_press_feedback	Right bank valve - pressure feedback
30047	right_bank_manifold_press	Right bank valve - manifold pressure
30048	right_bank_actuator_output	Right bank valve - actuator output
30049	right_bank_speed	Right bank valve - speed (if applicable)
30050	right_bank_sequence	Right bank valve - sequence
30051	o2_sp_trim	O ₂ sensor setpoint trim
30052	post_cat_nox_avg	Average post-cat Nox signal
30053	ign_confirm	Ignition confirm flag
30054	alarm_reset	Alarm reset flag
30055	pre_temp_avg	Average pre-catalyst temperature
30056	post_temp_avg	Average post-catalyst temperature
30057	dp_avg	Average catalyst differential pressure
30058	o2_1_avg	Average left bank O ₂ reading
30059	o2_2_avg	Average right bank O ₂ reading
30060	pre_temp_log	Long average/Log pre-catalyst temperature
30061	post_temp_log	Long average/Log post-catalyst temperature
30062	dp_log	Long average/Log catalyst differential pressure
30063	o2_1_log	Long average/Log left bank O ₂ reading
30064	o2_2_log	Long average/Log right bank O ₂ reading
30065	alarm_status_high	Over range alarm status
30066	alarm_status_low	Under range alarm status
30067	shutdown_status_high	Over range shutdowns status
30068	shutdown_status_low	Under range shutdown status
30069	filesize	Current log file size
30070	freespace	USB disk free space
30071	dac1_output	Left bank O ₂ DAC output
30072	dac2_output	Right Bank O ₂ DAC output
30073	o2_heater	O ₂ heater ON/OFF flag
30074	percent_o2_1	Left bank O ₂ percent
30075	o2_1_heater_pv	Left bank O ₂ heater feedback

Register	Description	Definition
30076	o2_1_heater_avg	Left bank O ₂ heater average feedback
30077	o2_1_heater_out	Left bank O ₂ heater output
30078	percent_o2_2	Right bank O ₂ percent
30079	o2_2_heater_pv	Right bank O ₂ heater feedback
30080	o2_2_heater_avg	Right bank O ₂ heater average feedback
30081	o2_2_heater_out	Right bank O ₂ heater output
30082	o2_1_status	Left bank O ₂ status
30083	o2_2_status	Right bank O ₂ status
30084	o2_warmup_timer	O ₂ warmup timer
30085	o2_trim_direction	O ₂ trim direction
30086	adc1	ADC reading channel1
30087	adc2	ADC reading channel ₂
30088	adc3	ADC reading channel3
30089	adc4	ADC reading channel4
30090	adc5	ADC reading channel5
30091	adc6	ADC reading channel6
30092	adc7	ADC reading channel7
30093	adc8	ADC reading channel8
30094	pre_status_o2_error	Not used
30095	o2_1_working	O ₂ sensor at operating temperature
30096	o2_2_working	O ₂ sensor at operating temperature
30097	eth_status	Diagnostics
30098	eth_txabrt	Diagnostics
30099	eth_reset	Diagnostics
30100	eth_tx	Diagnostics
30101	eth_rx	Diagnostics
30102	eth_packets_avail	Diagnostics
30103	eth_state	Diagnostics
30104	eth_rtc_sec	Diagnostics
30105	eth_rtc_min	Diagnostics
30106	eth_rtc_hour	Diagnostics
30107	eth_rtc_wday	Diagnostics
30108	eth_rtc_mdate	Diagnostics
30109	eth_rtc_month	Diagnostics
30110	eth_rtc_year	Diagnostics
30111	eth_ip_1	Diagnostics
30112	eth_ip_2	Diagnostics
30113	eth_ip_3	Diagnostics
30114	eth_ip_4	Diagnostics

Register	Description	Definition
30115	eth_use_static_ip	Diagnostics
30116	trimming_active	Diagnostics
30117	n3x_regs	Number of input(3x) registers

Holding Registers

Register	Description	Definition
40001	rtc_update	Update real time clock flag
40002	min_adjust_o2_trim	Minimum O ₂ trim adjustment
40003	max_adjust_o2_trim	Maximum O ₂ trim adjustment
40004	version	Software version
40005	milliamp_gain	mA input gain
40006	milliamp_offset	mA input offset
40007	serial_number	Serial number
40008	modbus_address	Modbus address
40009	calibrated	Original calibration flag
40010	f_ign_confirm	Force ignition confirm flag
40011	f_alarm_reset	Force Alarm reset flag
40012	save_data_command	Save holding registers to flash
40013	warmup_timer_start	Warmup timer duration
40014	ma_min	Minimum ma input
40015	ma_max	Maximum ma Input
40016	dp_min	Minimum catalyst differential pressure
40017	dp_max	Maximum catalyst differential pressure
40018	nox_transmit_rate	CAN transmit rate - NOx
40019	cm_info_transmit_rate	CAN transmit rate - Catalyst Monitor info
40020	o2_trim_transmit_rate	CAN transmit rate - O ₂ setpoint trim
40021	f_heater	Force Nox/O ₂ heater flag
40022	o2_trim_step	O ₂ setpoint trim increment
40023	nox_filter_rate	NOx averaging filter rate
40024	min_meter	Minute meter - Read Only
40025	hour_meter	Hour meter - Read Only
40026	data_log_enable	USB data logger enable flag
40027	log_rate	USB data logger rate
40028	sample_rate	O ₂ averaging rate
40029	overall_rate	Not used
40030	log_time_after_shutdown	Time in seconds to continue logging data after shutdown

Register	Description	Definition
		Pre-catalyst temperature Shutdown/Alarm
40031	pre_temp_shutdown	enable flag
		Average pre-catalyst temperature
40032	pre_temp_avg_shutdown	Shutdown/Alarm enable flag
		Long average/Log pre-catalyst temperature
40033	pre_temp_log_shutdown	Shutdown/Alarm enable flag
40034	pre_temp_avg_rate	Pre-catalyst temperature averaging rate
40035	pre_temp_alarm_min	Pre-catalyst temperature alarm minimum
40036	pre_temp_alarm_max	Pre-catalyst temperature alarm maximum
40037	pre_temp_alarm_delay	Pre-catalyst temperature alarm delay
		Average pre-catalyst temperature alarm
40038	pre_temp_avg_alarm_min	minimum
		Average pre-catalyst temperature alarm
40039	pre_temp_avg_alarm_max	maximum
40040	pre_temp_avg_alarm_delay	Average pre-catalyst temperature alarm delay
		Long average/Log pre-catalyst temperature
40041	pre_temp_log_alarm_min	alarm minimum
		Long average/Log pre-catalyst temperature
40042	pre_temp_log_alarm_max	alarm maximum
		Long average/Log pre-catalyst temperature
40043	pre_temp_log_alarm_delay	alarm delay
40044	pre_temp_shutdown_min	Pre-catalyst temperature shutdown minimum
40045	pre_temp_shutdown_max	Pre-catalyst temperature shutdown maximum
40046	pre_temp_shutdown_delay	Pre-catalyst temperature shutdown delay
		Average pre-catalyst temperature shutdown
40047	pre_temp_avg_shutdown_min	minimum
		Average pre-catalyst temperature shutdown
40048	pre_temp_avg_shutdown_max	maximum
		Average pre-catalyst temperature shutdown
40049	pre_temp_avg_shutdown_delay	delay
	pre temp log shutdown min	Long average/Log pre-catalyst temperature
40050	p. c_ccpco_c	shutdown minimum
	pre_temp_log_shutdown_max	Long average/Log pre-catalyst temperature
40051	p. c_ccpco_c	shutdown maximum
		Long average/Log pre-catalyst temperature
40052	pre_temp_log_shutdown_delay	shutdown delay
40050		Post-catalyst temperature Shutdown/Alarm
40053	post_temp_shutdown	enable flag
4005 4	post_temp_avg_shutdown	Average post-catalyst temperature
40054		Shutdown/Alarm enable flag

Register	Description	Definition
40055	post_temp_log_shutdown	Long average/Log post-catalyst temperature Shutdown/Alarm enable flag
40056	post_temp_avg_rate	Post-catalyst temperature averaging rate
40057	post_temp_alarm_min	Post-catalyst temperature alarm minimum
40058	post_temp_alarm_max	Post-catalyst temperature alarm maximum
40059	post_temp_alarm_delay	Post-catalyst temperature alarm delay
40060	post_temp_avg_alarm_min	Average post-catalyst temperature alarm minimum
40061	post_temp_avg_alarm_max	Average post-catalyst temperature alarm maximum
40062	post_temp_avg_alarm_delay	Average post-catalyst temperature alarm delay
40063	post_temp_log_alarm_min	Long average/Log post-catalyst temperature alarm minimum
40064	post_temp_log_alarm_max	Long average/Log post-catalyst temperature alarm maximum
40065	post_temp_log_alarm_delay	Long average/Log post-catalyst temperature alarm delay
40066	post_temp_shutdown_min	Post-catalyst temperature shutdown minimum
40067	post_temp_shutdown_max	Post-catalyst temperature shutdown maximum
40068	post_temp_shutdown_delay	Post-catalyst temperature shutdown delay
40069	post_temp_avg_shutdown_min	Average post-catalyst temperature shutdown minimum
40070	post_temp_avg_shutdown_max	Average post-catalyst temperature shutdown maximum
40071	post_temp_avg_shutdown_delay	Average post-catalyst temperature shutdown delay
40072	post_temp_log_shutdown_min	Long average/Log post-catalyst temperature shutdown minimum
40073	post_temp_log_shutdown_max	Long average/Log post-catalyst temperature shutdown maximum
40074	post_temp_log_shutdown_delay	Long average/Log post-catalyst temperature shutdown delay
40075	catalyst_dp_shutdown	Catalyst differential pressure Shutdown/Alarm enable flag
40076	catalyst_dp_avg_shutdown	Average catalyst differential pressure Shutdown/Alarm enable flag
40077	catalyst_dp_log_shutdown	Long average/Log catalyst differential pressure Shutdown/Alarm enable flag
40078	catalyst_dp_avg_rate	Catalyst differential pressure averaging rate
40079	catalyst_dp_alarm_min	Catalyst differential pressure alarm minimum

Register	Description	Definition
40080	catalyst_dp_alarm_max	Catalyst differential pressure alarm maximum
40081	catalyst_dp_alarm_delay	Catalyst differential pressure alarm delay
40082	catalyst_dp_avg_alarm_min	Average catalyst differential pressure alarm minimum
40083	catalyst_dp_avg_alarm_max	Average catalyst differential pressure alarm maximum
40084	catalyst_dp_avg_alarm_delay	Average catalyst differential pressure alarm delay
40085	catalyst_dp_log_alarm_min	Long average/Log catalyst differential pressure alarm minimum
40086	catalyst_dp_log_alarm_max	Long average/Log catalyst differential pressure alarm maximum
40087	catalyst_dp_log_alarm_delay	Long average/Log catalyst differential pressure alarm delay
40088	catalyst_dp_shutdown_min	Catalyst differential pressure shutdown minimum
		Catalyst differential pressure shutdown
40089	catalyst_dp_shutdown_max	maximum
40090	catalyst_dp_shutdown_delay	Catalyst differential pressure shutdown delay
40091	catalyst_dp_avg_shutdown_min	Average catalyst differential pressure shutdown minimum
40092	catalyst_dp_avg_shutdown_max	Average catalyst differential pressure shutdown maximum
40093	catalyst_dp_avg_shutdown_delay	Average catalyst differential pressure shutdown delay
40094	catalyst_dp_log_shutdown_min	Long average/Log catalyst differential pressure shutdown minimum
40095	catalyst_dp_log_shutdown_max	Long average/Log catalyst differential pressure shutdown maximum
40096	catalyst_dp_log_shutdown_delay	Long average/Log catalyst differential pressure shutdown delay
40097	delta_temp_shutdown	Catalyst differential temperature Shutdown/Alarm enable flag
40098	delta_temp_avg_shutdown	Average catalyst differential temperature Shutdown/Alarm enable flag
40099	delta_temp_log_shutdown	Long average/Log catalyst differential temperature Shutdown/Alarm enable flag
40100	delta_temp_avg_rate	Catalyst differential temperature averaging rate
40101	delta_temp_alarm_min	Catalyst differential temperature alarm minimum
40102	delta_temp_alarm_max	Catalyst differential temperature alarm maximum

Register	Description	Definition
40103	delta_temp_alarm_delay	Catalyst differential temperature alarm delay
		Average catalyst differential temperature alarm
40104	delta_temp_avg_alarm_min	minimum
		Average catalyst differential temperature alarm
40105	delta_temp_avg_alarm_max	maximum
		Average catalyst differential temperature alarm
40106	delta_temp_avg_alarm_delay	delay
	delta temp log alarm min	Long average/Log catalyst differential
40107		temperature alarm minimum
	delta_temp_log_alarm_max	Long average/Log catalyst differential
40108		temperature alarm maximum
	delta_temp_log_alarm_delay	Long average/Log catalyst differential
40109		temperature alarm delay
		Catalyst differential temperature shutdown
40110	delta_temp_shutdown_min	minimum
40111		Catalyst differential temperature shutdown
40111	delta_temp_shutdown_max	maximum
40112	delta_temp_shutdown_delay	Catalyst differential temperature shutdown delay
40112		Average catalyst differential temperature
40113	delta_temp_avg_shutdown_min	shutdown minimum
40114	delta_temp_avg_shutdown_max	Average catalyst differential temperature shutdown maximum
40114		Average catalyst differential temperature
40115	delta_temp_avg_shutdown_delay	shutdown delay
40115	delta_temp_log_shutdown_min	Long average/Log catalyst differential
40116		temperature shutdown minimum
10110	delta_temp_log_shutdown_max	Long average/Log catalyst differential
40117		temperature shutdown maximum
_		Long average/Log catalyst differential
40118	delta_temp_log_shutdown_delay	temperature shutdown delay
40119	dac1 offset	Left bank O ₂ voltage output offset
40120	dac1_gain	Left bank O ₂ voltage output gain
40121	dac2_offset	Right bank O ₂ voltage output offset
40122	dac2_gain	Right bank O ₂ voltage output gain
40123	o2_1_offset	Left bank O ₂ offset
40124	o2_1_gain	Left bank O ₂ gain
40125	o2_2_offset	Right bank O ₂ offset
40126	o2_2_gain	Right bank O ₂ gain
40127	o2_heater_i	O ₂ heater integral gain
40128	o2_heater_p	O ₂ heater proportional gain

Register	Description	Definition
40129	o2_heater_sp	O ₂ heater setpoint
40130	o2_heater_ramp_rate	O ₂ heater warmup ramp rate
40131	o2_cal_timer_start	O ₂ calibration warmup timer duration
40132	o2_percent_max	O ₂ percent maximum
40133	o2_percent_min	O ₂ percent minimum
40134	o2_1_enable	Left bank O ₂ sensor enable
40135	o2_2_enable	Right bank O ₂ sensor enable
40136	alarm_relay_active_closed	Alarm relay polarity
40137	shutdown_relay_active_closed	Shutdown relay polarity
40138	config	Catalyst Monitor configuration
40139	do_cal	Initiate O ₂ sensor free air calibration
40140	o2_cal_complete	O ₂ calibration complete
40141	nox_setpoint	NOx sensor setpoint
40142	nox_integral_gain	NOx integral gain
40143	nox_offset	NOx offset
40144	f_dac	Force DAC flag
40145	mac_1	MAC address octet1
40146	mac_2	MAC address octet ₂
40147	mac_3	MAC address octet3
40148	mac_4	MAC address octet4
40149	mac_5	MAC address octet5
40150	mac_6	MAC address octet6
40151	ip_1	IP address octe1
40152	ip_2	IP address octe ₂
40153	ip_3	IP address octe3
40154	ip_4	IP address octe4
40155	use_static_ip	Static address flag
40156	set_sec	Set real time clock: second
40157	set_min	Set real time clock: minute
40158	set_hour	Set real time clock: hour
40159	set_wday	Set real time clock: week day
40160	set_mdate	Set real time clock: date
40161	set_month	Set real time clock: month
40162	set_year	Set real time clock: year
40163	modbus_address_2	Modbus address ₂
40164	narrowband_output_en	Narrow band O ₂ output enable flag
40165	new_nox_alg_en	NOx algorithm enable flag
40166	lean_multiplier	Lean multiplier (algorithm)
40167	rich_multiplier	Rich multiplier (algorithm)

Register	Description	Definition
40168	adaptive_inc_table_0	Table setting0 (algorithm)
40169	adaptive_inc_table_1	Table setting0 (algorithm)
40170	adaptive_inc_table_2	Table setting0 (algorithm)
40171	adaptive_inc_table_3	Table setting0 (algorithm)
40172	adaptive_inc_table_4	Table setting0 (algorithm)
40173	adaptive_inc_table_5	Table setting0 (algorithm)
40174	adaptive_inc_table_6	Table setting0 (algorithm)
40175	spare0	Not used
40176	spare1	Not used
40177	spare2	Not used
40178	spare3	Not used
40179	nOregs	Not used
40180	nregs	Number of holding(4x) registers

Envelope, ECV5, 2.0 in. ANSI Flange

Envelope, ECVI

ECV5 Cable

Catalyst Monitor, Pages 1-2

ECVI PWB Wiring Diagram, Dual Bank

ECVI PWB Wiring Diagram, Single Bank

O₂ Sensor Cable Wiring Diagram

